
Part II
Magnetostatics

8: Magnetic Phenomena
8.1 History

8.1.1 Relation to Electrostatics

Magnetic phenomena are a lot less common in nature than electrostatic
effects. There are lots of ways to accidentally build up a static electric charge
and it isn’t hard to notice that something strange is happening. By contrast,
it takes deliberate effort to produce magnetism where it didn’t already exist,
and there aren’t a lot of naturally occuring magnets. Think about your
own experience: when was the last time you happened to notice something
behaving in a strange way that could have been a magnet, other than a man-
made object? Probably never. On the other hand, electrostatic shocks can
be a daily experience. Of course, these are also made more frequent by the
proliferation of different fabrics in modern life, but with furs and such lying
around for all of human history, someone was bound to notice the buildup
of charge pretty quickly. Despite all of this, it turns out that electricty and
magnetism were first studied seriously (at least as far as we know) around
the same time in Greece. Electricity was named by the Greeks after amber
because amber would readily build up electrostatic charge, while magnetism
was named after the province (Magnesia) where magnetite (an inherrently
magnetised iron ore) was found.

We study electricity and magnetism together because we now know that
the two are intimitely connected phenomena and even understand (just wait!)
what that connection is. But even in the ~600s BCE, it was clear that the two
were similar and attempts were made to relate the two (unsuccessfully). It
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was only after the development of controlled electrical currents that scientists
were able to understand the connection between the two.

8.1.2 Permanent Magnets

In any event, there were magnetised objects occurring naturally. Lodestones
and magnetite are obvious examples, but it is also possible to produce a
magnet accidentally in the course of working with metal. Rubbing two pieces
of iron together in the same orientation for a very long time will slowly
magnetise them both. Apparently you can use this to build a compass in an
emergency, but I’d suggest just packing one for your trip instead.

It was realized pretty pretty quickly that magnets have the special prop-
erty of reliably preferring to point (roughly) north. This is of course the
entire basis for the functioning of a compass. This is also the origin for much
of the nomenclature associated with magnetism.

8.2 Behavior

8.2.1 Permanent Magnets
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Figure 8.1: Opposites Attract

Every magnet has 2 different “ends”, known as poles because of their ten-
dency to orient towards the earth’s poles. This tendency led to the obvious
choice of names: the north pole of a magnet is the end that points toward
the north pole of the earth, the south pole... points the other way. However,
this choice leads to a confusing fact. If you take two magnets and identify
the north pole of both (by testing where they point when allowed to rotate
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freely), you will find that when you bring the two together, the north poles
repell, while the north poles attract the southern poles. Like repells like and
opposites attract (as with electric charge). Following this logic, then, we find
that what we have cleverled labeled the “north” pole of our magnet must be
attracted to a “south” pole: the North Pole is magnetically south! If you
thought it was a little odd that electrons ended up with a negative charge,
screwing up our definition of current, this should put it into perspective. Of
course, nobody refers to the north pole of the earth as the south magnetic
pole. We use words like “geomagnetic north”, which means “we know its the
north pole but the magnet actually isn’t north and we’re just calling it north
anyway”.
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Figure 8.2: Magnetic North is... Magnetic South

Monopoles

There is no such thing as a magnetic monopole. If you separate a north and a
south pole, you just end up with 2 of each. This entirely unlike electrostatics.
It is possible to construct an electric dipole, but it is made of 2 opposite
charges which can exist and act independently. There simply isn’t an analog
in magnetism, despite extensive searches by very serious people for a very
long time and some pretty interesting ideas about why they should exist.
This is an idea that I imagine won’t ever die, and could even be correct, but
has no real support at the current time.

93



a- lL- ov
t 

-

Le "1u,.  
Yi  nv{t} ' )

Di(dl  *"

I

I

+v
Dloale

ffiil
h

ry
e1,&i**nq,'.we.w6isrtur*_,r" 

--_-- 
_._.

g  0 i  fd l t t

-wn
/V" r f lB

O&
tt1Y\ 

e*n*o y olt ,"

--">

F*?

-->r
?

F
?

L

E"r V\"' /\"t\
Figure 8.3: No Magnetic Monopoles

Magnetic Fields

We aren’t yet ready to define a magnetic field, but even casual experimen-
tation with magnets make a field seem even more real than in the case of
electric fields. Holding two reasonably strong magnets and trying to push
the like poles together gives a definite sense that something is in the way.
You can even feel out the shape of the field lines to a certain extent.

Magnetic field lines are similar to electric field lines but also quite differ-
ent. They represent a vector field, as do electric field lines, but the meaning
of their direction is less straightforward and we must wait to define it. They
also, unlike electric field lines, have no starting and stopping points. Mag-
netic field lines form continuous loops that exit from a magnet at the north
pole and enter at the south pole, but continue inside and in this region
travel from south to north. This is actually the same as saying that there
are no magnetic monopoles. You can split an electric dipole by separating
the sources of field lines from the sinks, but with a magnet there are no ends,
so sources and no sinks. We denote the magnetic field as !B. I actually have
no idea why we use the letter B for the magnetic field, but everyone does.

Magnetic field lines, like electric field lines, cannot cross, and will try
and evenly distribute themselves. The field of a bar magnet looks much like
the field of an electric dipole for good reasons, even tho they have different
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Figure 8.4: Field of a Bar Magnet

behavior, as we will see. Since magnetic field lines emerge from N poles and
enter into S poles, it is possible to construct a region of uniform magnetic
field in much the same way as we can use two charged plates to construct a
uniform electric field. The positively charged plate will emit lines which the
negative plate receives: likewise, lines (externally) will flow from N to S.
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Figure 8.5: Uniform Magnetic Field
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Figure 8.6: Magnetic Field from a Straight Current

8.2.2 Electromagnets

With the invention and relatively easy access to controllable and known
electrical currents, it was possible to discover and study the effect by which
moving electrical charges (currents) produce magnetic fields. The resulting
fields are simple, but unlike what we have seen so far. Rather than in any
way emitting from the wire, the field lines will form perfect concentric circles
around a straight wire. If you bend the wire (into a loop, for instance), then
these circles will distort against one another and change a bit, but close to
the wire you always have perfect little circles.

So there are a few strange things about these fields already. First, they
aren’t produced by a charge of any sort, but the motion of a charge. This is
stranger than the difference between gravitation and electrostatics in a sense,
because there all we did was change what the “charge” was, and we were in
business. The force formula was even the same! Now we have to worry about
charges movement. Not only that, however. Notice that the direction of flow
of (positive) charge is along the current carrying wire, while the field is going
around the wire. Not towards, or away, or with, but around it. This means
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that the field is at a right angle to the direction of flow of the current. If
it had been radially outward, we could have convinced ourselves that the
charge for magnetic fields is just moving charge, and then everything else
would be the same. But alas, things are not so straightforward. Hang in
there, however, because there is a charge analogy to be made later down the
road.

I specified that the field goes around the wire. Around which way? Mag-
netic fields obey various right-hand-rules, and the first is that if you have
a current, you can find the directon of the associated field by aligning your
(right) thumb along the current and curling your fingers. The direction of
curl will indicate which way the field goes. At this point you should ask
yourself where else you’ve seenthe RHR used, and the answer is: anywhere
a vector (cross) product was lurking (such as torque). Sure enough, we are
zeroing in on a cross product, but we aren’t there yet.

8.3 Forces

8.3.1 Force Exerted by a Magnetic Field on a Length of Cur-
rent

We saw that magnets exert a force on one another (tho we didn’t fully define
what it was), and we’ve seen that electric currents produce magnetic fields.
It should not then be a surprise to find that magnetic field exert a force on
currents. What may be a surprise, however, is that the force applied is not
attractive or repulsive but rather orthgonal. A current bearing wire passing
through a magnetic field will feel a force which is perpendicular to both the
direction of current flow, and the magnetic field direction. Three mutually
orthogonal related vectors is another good sign that the three are connected
by a cross product, and in fact once again we use the right hand rule to
identify the relationship between the directions of the problem. There is
a special memnonic for the right hand rule when used for force, magnetic
field, and current based on the acronym FBI. Put your thumb, pointer, and
middle finger in a mutually orthogonal position. Now in order your middle
finger is the force (!F ), pointer is magnetic field ( !B) and your thumb is in the
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direction of current (!I). The acronym is in the order of your fingers, starting
in the middle with F. Alternatively (and resulting in an alternative set of
assignments, so pick one way and stick with it!) we can use the standard
technique based on the order of a cross product once we define the force
equation. While these 2 methods will assign a different quantity to different
fingers, the resulting relationship is the same, so either one works but you
are probably better off sticking with one way to remember.
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Figure 8.7: Force on current due to magnet

Experimentation allows us to fully identify the form of the force felt by
the wire, which isfound to vary with the angle between the current and field
as

!F = I!"× !B = I"B sin θ!B[F ] = C
s mT where T = N s

mC = N
A·m is a Tesla.
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Figure 8.8: Magnetic Force on a Current

where !" is the wire segment within the field. The field was initially
defined by this relation, tho we find a more fundamental definition later.
The strength of the force is proportional to the length of the wire, and
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this formula can be applied for curved or non-uniform currents by, as usual,
turning things inter differential elements:

d!F = Id!"× !B.
This is differential force element due to a small piece of wire. We could

also find the force element on a wire by a differential element of field:
d!F = I!"× d !B.
This is actually more analogous to what we would use for Coulomb’s law

but isn’t useful until we define a way of calculating the field !B. We won’t
do this for a little while yet, but there is plenty we can do without such a
defnition.
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Figure 8.9: Force on current in uniform magnetic field

8.3.2 Force on a Single Moving Charge

We know from our study of circuits that a current is just a collection of
moving electric charges. If this leads you to expect that individual moving
charges also feel a force due to a magnetic field, you are correct. We can
find the force on a single charge simply by dividing the force on a current
up amongst all of its constituent charges. Or, equivalently, we can define a
single moving charge as a tiny current !Iq = q!v.

!F = q!v × !B

The force on a wire with current flow is actually the sum of the forces
on all of the moving electrons inside the wire. Because the electrons cannot
escape the wire, they keep getting pushed against the sides in the direction
of the force applied by the magnetic field, and this pushing translates into
a force on the wire as a whole. When a particle passes through an electric

99



field on its own, however, there is nothing to push back and keep it going in
a straight line. Because of this, a particle passing through a magnetic field
will be deflected in a direction determined by the right-hand-rule. However,
once the particle is deflected, the force it will experience is in a different
direction because of the cross product. This will cause the particle to be
deflected further, which results in a new direction of force, and so on and
so forth. It is in fact not possible to construct a magnetic field which will
only exert a force on a particle in a single direction, as it is with the electric
field. The dependence upon !v means that the force will always depend on
how the particle is moving, and since the force will change how that particle
is moving, charged particles never travel in straight lines through a magnetic
field. This is manifestly different from electric or gravitational forces. It is
possible to have curved trajectories in either of those fields, but not necessary.
It is quite possible to fall straight down, and two opposite charges at rest will
attract one directly together in a straight line. This simply cannot happen
to a free charged particle in a magnetic field. By restricting a charge to a
wire, we can force it into a straight line, but even the wire will try to bend
and move too accomodate the flowing electrons need to travel in a curve.
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Figure 8.10: Magnetic force on a moving charge

In the special case of a constant magnetic field, a charged particle will
travel in a closed circle. This is because it will feel a constant force perpen-
dicular to its direction of motion, exactly as a ball on a wire or any other
forced circular motion in mechanics.
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8.3.3 Examples

We can calculate forces on currents and moving charges using the equations
above. As with electric fields, the principal of superposition still applies: if
we have multiple magnetic fields, the resulting total force will just be the
sum of the forces due to each field. Also, in the case of currents we need
to consider forces on different pieces of a current carrying wire. In our first
example, there are 3 sections of wire in a uniform magnetic field. Each
segment feels a different force and must be calculated separately and then
added together.

Wire loop inserted into a uniform magnetic field
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Figure 8.11: Force on curent loop partially inserted into magnetic field

We can measure the strength of a magnetic field by inserting a known
current of known length and direction into the field. Note that in this partic-
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ular example we allow 2 forces which act in different places to cancel. This
is correct, the total force does become 0, but if the loop were not already
perpendicular to the field, this would create a torque (as there is whenever
two forces act in opposition from different points on the same object).

Curved wire in uniform magnetic field
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Figure 8.12: Measuring !B with a curved current loop

This is the same a the last situation, except we are insering a curved
section of wire instead of a straight one. This requires us to do an integral
over the angle of the semicircle of the current loop. Notice, however, that the
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force is unchanged by this modification. The force is acting on components
of charge from left to right to produce the ŷ component of force, and there is
just as much of this in one case as the other. The x̂ component just cancels
out by symmetry.

Single Charge in a uniform magnetic field
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At any given moment, the force on a point charge is simply given by the
formula above,

!F = q!v × !B.
There isn’t much more to it. However, if we wish to calculate the trajec-

tory a charged particle takes, we would use the equation
d!F = q!v × d !B −→ d!a = d"F

m

and use it in the expression for the arbitrary position of a particle under
a force,

!r (q, T ) =
ˆ T

0

(
!v0 (q) +

ˆ t

0
d!a (q)

)
dt.

However, there really isn’t anything particularly interesting to be gained
by wading through the application of this bit of nested calculus. I mention it
just to point out that it is doable and to give a sense of the added complexity
of dealing with magnetic forces in general. The electrostatic analog would
look the same, except that the second integral would just be some number,
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or a very simple function, rather than an integral.
The only case of single particle motion we want to consider carefully at

this point is a charge in a uniform field. In this case, we have already argued
that the motion will be circular. Using what we already know, we can get
more specific.
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Figure 8.13: Helical trajectory

If a particle has components of motion both parallel to and perpendic-

104



ular to an external magnetic field, its motion will be circular in the plane
perpendicular to the magnetic field, while traveling unaffected in the parallel
direction. The path traced out by such motion is a single helix.

Aurora Borealis

Figure 8.14: Aurora Borealis: Helical motion at work!

The Aurora Borealis (and their southern counterpart the Aurora Aus-
tralis) are perhaps the most naturally beautiful examples of electric or mag-
netic phenomena. Charged particles from the sun (“Solar Wind”) get caught
by the earth’s magnetic field and then spiral down to the surface (much like
the helical example above) until they reach the atmosphere. Once these
charged particles (which have been accelerated by the magnetic field) hit
atoms in the atmosphere, they heat it up and cause it to glow in a variety
of colors and patterns.
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8.3.4 Torque

If we repeat the example of inserting a current loop into a uniform magnetic
field, but this time insert the loop rotated 90 such that the end segment(
!"
)

is parallel to the magnetic field, we find that the forces on the other
two lengths exert a torque on the loop. This is analogous to the case of an
electric dipole in a constant electric field feeling a torque around its center.
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Just like in the case of an electric dipole, a magnetic dipole in a field has
an associated potential energy given by the torque and angle through which
it must be rotated:

U =
´

τdθ = NIAB
´

sin θdθ = µB (− cos θ) + U0.
If we chose the 0 of our potential to be at θ = π

2 , this becomes
U = −!µ · !B

which we can readily compare to the potential energy of an electric dipole
in a constant electric field !E:

UE = −!p · !E.
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