
AST 231 (E. Blackman) SUPPLEMENT:

Clarification of Index/Tensor Notation, Basis Vectors, and the Minus Sign in

Equation 5.83 of the Textbook

I wanted to clarify some of the basics of index. 4-vector, and tensor notation used in

the text and explain why there is a minus sign in computing the energy of a particle as seen

by a moving observer (equation 5.82, 5.83 of textbook). The book is not optimally clear on

these points and hopefully the exposition below will help.

First note that in the text when 4-vectors such as space-time position xµ or energy-

momentum pµ are written with the indices as superscripts, are called “contravariant” whereas

when the indices are written as subscripts, the quantites are said to be “covariant”. The

two are “dual” spaces to each other in that there is a 1 to 1 correspondence between the

information contained. Using the spacetime position vector as an example, the two forms

can be related in special relativity by

xµ = ηµνx
ν , (1)

where repeated indices are summed and ηµν is our metric tensor for Minkowski space used

to calculate distances and scalar products. This tensor is of “rank 2” because it has two

subscript indices and is here essentially just a symmetric 4 x 4 matrix with η11 = η22 =

−η33 = 1 = −η00 and all other components zero.

The metric tensor ηµν is used to calculate scalar products in the following way: For

example, the line element is a scalar product

ds2 = ηµνdx
µdxν = dxνdx

ν = dxλdx
λ (2)

remembering that repeated indices are summed (so the replacement of ν by λ in the last

equality simply gives equivalent sums). In (2) the contravariant differential spacetime po-

sition 4-vector dxµ = (dt, dx, dy, dz). The metric tensor ηµν can be said to “lower” indices

and thereby convert contravariant to covariant forms as in Eq. (1) so that e.g. covariant

4-vector dxµ = ηµνdx
ν = (−dt, dx, dy, dz). We can also “raise” indices by the tensor ηµν .

This is related to ηµν by

δ ν
µ = ηµλη

λν , (3)

where repeated indices are summed and the left side is the 4 x 4 identity matrix. This shows

that ηµλ = ηµλ, and so multiplying equation (1) by ηλµ will return xλ on the right side.

When we write a 4-vector in index form, (i.e. xµ) this represents an unspecified com-

ponent of the 4-vector x much like in 3-D if we write xi, we mean any one of the x, y, z



components of a vector. The book introduces the basis notation where the 4-vector can be

written as

x = xαeα, (4)

where eα is a set of four covariant 4-vectors. That is, e.g. e0 is a time-like 4-vector, and e1,

e2, e3 are the spacelike 4-vectors. The subtlety of this notaton is that eα is really a matrix

because it is a set of four 4-vectors, each of which have 4 components. This is why (4) is not

a scalar: although repeated indices are summed in (4) there are still 4 unsummed indices.

To see this more explicitly, for practical purposes we can write (4) in index notation as

xµ = xαeα
µ (5)

Presenting (5) in this index notation format helps explain why there is a minus sign in the

first equality of equation 5.82 and 5.83 of the text as I now discuss.

Equation 5.82 of the text represents the projection of the energy momentum 4-vector

of a particle in an inertial frame, onto the local orthonormal frame of an arbitrarily moving

observer and therefore represents the value of the energy-momentum 4-vector as measured

by this observer. Using index notation we can write Equation 5.82 as a 4-vector

pobs
µ = ηµνηλσp

λeν
σ, (6)

remembering that repeated indices are summed, and that the energy momentum 4-vector on

the right side is that measured in the inertial frame, while the basis “matrix” eν
σ corresponds

to that of the moving observer as also measured in the inertial frame.

Now consider the 0 component of (6) (the timelike component):

pobs
0 = η0νηλσp

λeν
σ. (7)

Since η0ν is zero unless ν = 0 we can replace ν by 0 in (7). This gives

pobs
0 = η00ηλσp

λe0
σ. (8)

But η00 = −1 so this becomes

pobs
0 = −ηλσpλe0σ. (9)

But this is just MINUS the scalar product between the energy momentum 4-vector in the

inertial frame and the time-like basis vector of the moving observer. Because the σ index

is a superscript this basis vector is contravariant and, as discussed in class and the text,

eσ0 = uσobs, the 4-velocity of the moving observer. Thus (9) is

pobs
0 = −p · uobs, (10)



which is exactly equation 5.83 of the text since E = p0
obs.

For the 1,2,3 components of (6) (the space like components) we do not obtain a minus

sign as in 10. The reason can be seen using the 1 component of (6) as an example. That

component is

pobs
1 = η1νηλσp

λeν
σ. (11)

Here only the ν = 1 contribution contributes because ηµν is diagonal. Since η11 = 1 we then

have:

pobs
1 = η11ηλσp

λe1
σ = ηλσp

λe1
σ = p · e1, (12)

which corresponds to the second equation in 5.82. The 2 and 3 components (y,z components)

follow similarly.

One final point on the meaning of equations 5.81-5.83: The energy and momentum

measured by a specified observer with a specified orthonormal basis is the SAME when the

right side of 5.81-5.83 are calculated in ANY FRAME. This is same concept as the fact

that all observers agree what the time measured on a specified observer’s clock reads once

that observers frame is specified. (E.g. in the twin paradox, the stationary twin agrees that

moving twin’s clock should measure less time passed given her different path in spacetime).

So once you specify the orthonormal basis of a specific observer using some set of coordinates,

you can calculate what that specific observer measures using the coordinates in any other

frame.


