AST 462: Physics of Astrophysics 2: Astrophysical Fluid and Plasma Dynamics

Professor: Eric Blackman, B&L 417A, 5-0537

Texts:

A. Choudhuri: Physics of Fluids and Plasmas;

C. Clarke and R. Carswell: Astrophysical Fluid Dynamics

F. Shu, Physics of Astrophysics vol 2: Gas Dynamics (supplemental)

Course grading: course will be graded pass-fail

Course work:

- 1. Study class notes and text
- 2. Problem sets
- 3. Final project with a talk during exam week and a paper.

Tentative Topics Outline:

Neutral Fluids:

Kinetic theory vs. Fluids: the big picture Boltzmann equation and collisions

Transport Theory

Moment Equations/Basic Fluid Equations

Hydrostatic Equilibrium Limit

Bernoulli's Principle

Vorticity and Circulation

Inviscid vs. Viscous Flows

Sound Waves

Spiral Density Waves

Fluid Instabilities

Shocks

Thermal Instability

Hydrodynamic Turbulence

Mixing Length Theory of Convection

Rotating Fluids

Accretion Disks

Outflows

Magnetohydrodynamics, Plasmas and Related Phenomena:

Basic Plasma Physics

Basics of MHD and relation to hydrodynamics

Flux Freezing

Magnetic Breaking

MHD Outflows

Magnetic Dynamos

MHD Turbulence

MHD Stability

Magneto-rotational Instability and Accretion Disks