
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
R. Yan, R. Betti, J. Sanz, H. Aluie, B. Liu, and A. Frank 
 
Citation: Physics of Plasmas 23, 022701 (2016); doi: 10.1063/1.4940917 
View online: http://dx.doi.org/10.1063/1.4940917 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/23/2?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
The late-time dynamics of the single-mode Rayleigh-Taylor instability 
Phys. Fluids 24, 074107 (2012); 10.1063/1.4733396 
 
Combined effect of viscosity and vorticity on single mode Rayleigh–Taylor instability bubble growth 
Phys. Plasmas 18, 022109 (2011); 10.1063/1.3555523 
 
Experimental study of the single-mode three-dimensional Rayleigh-Taylor instability 
Phys. Fluids 19, 124102 (2007); 10.1063/1.2813548 
 
Mixing induced by Rayleigh–Taylor instability in a vortex 
Phys. Fluids 17, 021703 (2005); 10.1063/1.1852580 
 
Three-dimensional bubbles in Rayleigh–Taylor instability 
Phys. Fluids 11, 3306 (1999); 10.1063/1.870189 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.151.150.18 On: Tue, 02 Feb

2016 14:55:24

http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/779483913/x01/AIP-PT/PoPArticleDL_012716/SearchPT_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=R.+Yan&option1=author
http://scitation.aip.org/search?value1=R.+Betti&option1=author
http://scitation.aip.org/search?value1=J.+Sanz&option1=author
http://scitation.aip.org/search?value1=H.+Aluie&option1=author
http://scitation.aip.org/search?value1=B.+Liu&option1=author
http://scitation.aip.org/search?value1=A.+Frank&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4940917
http://scitation.aip.org/content/aip/journal/pop/23/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/24/7/10.1063/1.4733396?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/18/2/10.1063/1.3555523?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/19/12/10.1063/1.2813548?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/17/2/10.1063/1.1852580?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/11/11/10.1063/1.870189?ver=pdfcov


Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

R. Yan,1,2 R. Betti,1,2,3 J. Sanz,4 H. Aluie,1,2 B. Liu,3 and A. Frank3

1Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA
2Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627, USA
3Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
4E.T.S.I. Aeron�auticos, Universidad Polit�ecnica de Madrid, Madrid 28040, Spain

(Received 4 November 2015; accepted 7 January 2016; published online 2 February 2016)

The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three

dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wave-

length modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds

both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D

short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven

by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass

ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume. VC 2016
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940917]

I. INTRODUCTION

Inertial confinement fusion (ICF) implosions1 are unsta-

ble to the Rayleigh-Taylor instability (RTI).2 The outer sur-

face of an ICF shell is irradiated either by direct laser light

or by X ray emitted by a high-Z hohlraum.1 The radiation

absorbed by the shell material causes mass ablation off the

shell’s outer surface. This rocket effect causes an inward mo-

mentum input that leads to the shell’s acceleration and com-

pression. It is during this acceleration phase that the outer

shell surface is unstable to the RTI, which occurs when a

less dense (“lighter”) fluid (ablated plasma) pushes on a

denser (“heavier”) fluid (the unablated plasma). This insta-

bility develops into an interchange of heavy with light mate-

rial. The “bubbles” of lighter fluid rise through the denser

fluid, penetrating through the dense shell. This causes the

breakup of the shell and/or the injection of ablator material

into the central hot plasma (mix). If the integrity of the

imploding shell is compromised by the RTI bubbles, the

shell is no longer an effective piston and the final compres-

sion of the central plasma is greatly reduced. If the hot

deuterium-tritium (DT) fuel is mixed with the high-Z ablator

material, the enhanced radiation cooling prevents the DT

fuel from achieving the thermonuclear ignition conditions.

The theory2 for the evolution of the classical RTI (without

ablation) between two inviscid ideal fluids in a gravitational

field has been developed for a sinusoidal perturbation (single

mode) in a light fluid with density ql supporting a heavy fluid

with density qh separated by a sharp interface. The classical

RTI bubbles first grow exponentially in time during the lin-

ear phase with a growth rate c ¼
ffiffiffiffiffiffiffiffiffiffi
ATkg
p

, where g is the grav-

itational acceleration (an effective gravity in the frame of the

accelerating shell in ICF), k¼ 2p/k is the perturbation wave

number, and AT is the Atwood number AT¼ (qh� ql)/

(qhþql). As the amplitude of the interface perturbation

approaches a critical value about equal to 0.1k, the perturba-

tion amplitude ceases to grow exponentially and the bubbles

of light fluid rise at a constant velocity inside the heavy fluid

driven by the buoyancy force against the flow drag. The first

nonlinear model introduced by Layzer3 is based on a

potential-flow assumption with AT� 1. This model describes

the RTI growth from the early linear stage to a bubble rising

with a constant velocity. Goncharov4 extended Layzer’s

model to include finite density of the light fluid (AT� 1) and

found an exact solution of the equations describing the fluids

near the bubble tip in terms of Fourier series. The asymptotic

or terminal bubble velocity Ucl
b depends on the dimensional-

ity of the initial perturbation. For 2D and 3D initial perturba-

tions, the terminal bubble velocity is Ucl2D
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1�rdÞ=3k

p
and Ucl3D

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1�rdÞ=k

p
, respectively,4 where rd¼ql/qh.

Mass ablation at the interface between the two fluids sig-

nificantly affects the evolution of the RTI (ARTI or ablative

Rayleigh-Taylor). In ICF implosions, mass ablation is caused

by the laser or by X-ray energy deposited near the shell’s

surface and used to drive the implosion. It is well known that

ablation stabilizes the linear growth in the ARTI5–8 by plac-

ing an upper cutoff in k on the unstable spectrum. The pene-

tration velocity of the ablation front into the heavy shell

material is called the ablation velocity (Va) and the linear

growth rate of the ARTI can be often approximated using the

Takabe’s formula8 obtained by fitting numerical results

cARTI � a
ffiffiffiffiffi
kg

p
� bkVa; (1)

where the first term on the right-hand-side is the classical

instability drive, and the second term represents the stabiliz-

ing effects of ablation. The linear growth rate from the ana-

lytic theory5,7,9,10 is more complicated than shown in

Eq. (1), however, by choosing the coefficient b� 2.7 and

a’ 0.94, Eq. (1) represents a fairly accurate fit to the numer-

ical results for a DT ablator.7 Different values of a and b
have to be chosen for different ablator materials, for exam-

ple, b’ 1.7 and a’ 1.0 for beryllium and CH (plastic) abla-

tors. However, for these two materials, Eq. (1) has to be

modified as cARTI � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kg=ð1þ kLmÞ

p
� bkVa to include the

effect of finite density-gradient scale length Lm that is
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negligible for DT.7 A typical set of direct-drive ignition pa-

rameters for DT ablators yields a cutoff wavelength of less

than 10 lm and all modes with wavelengths smaller than the

cutoff are linearly stable.7

While ablation is stabilizing in the linear regime, the

growth of the RTI in the deeply nonlinear regime is acceler-

ated as a result of mass ablation off the fluid interface. An

anomalous nonlinear growth, faster than exponential, was

observed in the numerical solution of the nonlinear model of

Sanz et al.11 The nonlinear theory of Ref. 11 treats the vortex

flow in the ablated plasma as a small correction to the abla-

tive flow. While this assumption is valid in the linear and

weakly nonlinear phases, it does not apply to the deeply non-

linear phase of the bubble evolution. The nonlinear bubbles

enclose relatively cold plasma with a large vorticity. Inside

the bubble, the vortex flow is greater than the ablative flow

and the expansion in Ref. 11 breaks down. Two-dimensional

simulations were used in Ref. 12 to study the nonlinear bub-

ble evolution in the deeply nonlinear regime where the vor-

ticity dominates the flow inside the bubbles. The vorticity is

originally localized at the fluid interface and transported by

mass ablation from the interface into the low density ablated

plasma. As the ablated plasma fills the volume within the

bubbles, the vorticity accumulates, providing a centrifugal

force that acts on the bubble’s wall. Similar vorticity accu-

mulation and bubble acceleration phenomena were also

reported by Wang et al.13 In 2D geometry,12 the bubble

acceleration vanishes asymptotically and the bubble’s veloc-

ity saturates at a value above its classical value Ucl2D
b .

Another numerical study by Igumenshchev et al.14 showed

that a small defect on the target surface with a 10 lm radius

and 1 lm height drives an RTI bubble that quickly penetrates

through the shell. This indicates that even short-wavelength

modes can significantly degrade the target performance.

A large body of numerical work exists on the classical

(no ablation) 3D RTI. The single-mode problem, as the most

fundamental case, has been simulated in both planar15–17 and

spherical17,18 geometry. It was found that the 3D bubbles

grow faster than the 2D bubbles in the nonlinearly saturated

phase, which is consistent with the difference between Ucl2D
b

and Ucl3D
b predicted in theory.

The first set of simulations for the 3D ARTI is described

in the paper by Dahlburg and Gardner19 in the early 1990s.

They used a laser-absorption model based on inverse brems-

strahlung to induce mass ablation at the surface of a planar

foil in the simulations. The initial perturbations are sinusoi-

dal squares. The 3D bubble was observed to grow 10%

slower than the 2D bubble but the 3D spike grew 25% faster

than the 2D spike. This result appeared at odds with the clas-

sical RTI results above indicating faster bubble growth in

3D. Vortex rings were observed generated at the instability

interface and ablated off the 3D spike tip due to mass abla-

tion, but the feeding of the vortex rings back into the bubble

and the enhancement of bubble growth due to the vertex

acceleration mechanism, as presented in Ref. 12, was not

observed probably because the mode wavelength was not

sufficiently close to the linear cutoff. Later work by

Dahlburg et al.20 addressed the difference between sinusoi-

dal and Bessel perturbations. It shows that the cylindrical

mode grows faster than the square mode in the nonlinear

phase of the bubble growth. Good agreements between simu-

lations and experiments on the ARTI bubble-spike structures

were reported in both single-mode21 and multi-modes22

regimes. However, the nonlinear evolution of the ARTI bub-

ble in 3D geometry is still an open topic deserving more in-

depth study.

In this paper, we study both numerically and analytically

the detailed evolution of 3D single-mode ARTI for short-

wavelength modes to assess the differences between 3D and

2D bubbles evolution. Like in 2D, we find that 3D bubbles

are also accelerated beyond the classical terminal velocity

when their wavelengths are close to the linear cutoff.

Differently from 2D, saturation of the bubble velocity is not

observed in the 3D simulations of single modes near the lin-

ear cutoff. This study is focused on single-mode, sinusoidal

perturbations in planar foils. Different perturbation shapes

other than sinusoidal are not considered here because those

are not Fourier modes of the system and require unphysical

boundary conditions. The acceleration of the bubble beyond

the classical terminal velocity is caused by the accumulation

of vorticity inside the bubble driven by mass ablation. This

phenomenon only occurs for modes near the cutoff where

ablation is important. For mode wavelength much greater

than the cutoff wavelength, the effect of ablation-driven bub-

ble acceleration is negligible and the bubble velocity satu-

rates approximately at the classical value. The rest of this

paper is organized as follows: In Sec. II, the simulation con-

figurations and results are presented. In Sec. III, a semi-

analytical theory is developed to explain the simulation

results. In Sec. IV the results are summarized.

II. SIMULATIONS

Our study uses the 3D version of the code ART.12

ART3D solves the single-fluid hydrodynamic equations

including Spitzer thermal conduction23 over a 3D Cartesian

grid. The quasi-equilibrium state from which the ARTI per-

turbations grow uses profiles typical of direct-drive National

Ignition Facility (NIF) targets.24 A planar approximation is

valid as long as the target thickness, mode wavelength, and

conduction zone region are much smaller than the target ra-

dius. This condition is satisfied during most of the

FIG. 1. (a) The simulation setup for the ART3D simulation with k¼ 10 lm.

The contour is the initial density distribution. (b) The initial q (solid) and vz

(dashed) profiles along the z-axis.
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acceleration phase. The simulation setup is shown in Fig. 1.

A slab of cold dense DT is placed in the upper half of the

simulation box, while the lower half is the ablated plasma

with a higher temperature but a lower density. The interface

between the dense and the ablated plasma (the ablation front)

is kept approximately fixed in space by balancing the abla-

tive pressure with an effective gravity ~g. This is equivalent

to solving the fluid equations in the frame of reference of the

accelerated foil. The initial gravity is g0¼ 100 lm/ns2 and

the ablation velocity Va¼ 3.5 lm/ns, typical of the laser-

driven target of Ref. 12. The laser energy flux towards the

ablation front is simulated through a constant heat flux

assigned at the bottom boundary of the simulation box

(z¼ 0). The value of the heat flux corresponding to this abla-

tion rate can be computed through the equilibrium equations.

In this case q¼ 6.0 MW/lm2. Since the mass of the foil

decreases in time due to ablation, the effective gravity (along

the negative z direction) needs to be increased to balance the

force from the ablation pressure. This setup offers the advan-

tages of a highly controlled simulation allowing precise eval-

uations of the bubble penetration velocity into the dense

plasma.

Two types of initial perturbations are used in the simula-

tions: 2D perturbations proportional to cosðkxÞ � expð�kjz
�z0jÞ and 3D perturbations proportional to ½cosðkxÞ
þcosðkyÞ� � expð�kjz� z0jÞ, where z0 is the location of the

ablation front. We first consider a perturbation wavelength

k� 2p/k¼ 10 lm which is sufficiently close to the linear cut-

off for ablation to be important but well into the linearly

unstable spectrum (k> kcutoff� 6 lm) to grow faster than the

mass depleting time due to ablation. For the 2D perturbation,

the simulation box is 10 lm� 120 lm with a grid

100� 1200. For the 3D perturbation, the simulation box size

is 10 lm� 10 lm� 120 lm with a grid 100� 100� 1200.

Periodic boundary conditions are applied on the x- and

y-directions and the equilibrium boundary conditions are

used on the upper and lower boundaries in the z-direction.

The linear and nonlinear bubble velocities are measured

in the simulations. The ARTI bubble velocity (Ub) defined as

the speed of the bubble vertex penetrating through the slab

of dense fluid is plotted in Fig. 2. The 2D simulations show a

bubble growth consistent with the results of Ref. 12. The

bubble velocity starts to grow from the value of the ablation

velocity Va that represents the initial penetration velocity of

the ablation front into the heavy fluid. As the bubble ampli-

tude grows, the low-density plasma filling the bubble is

colder than the blow-off plasma and the mass ablation off

the bubble walls becomes negligible. At this stage, the bub-

ble behaves like in the classical RTI case without ablation

and the bubble velocity saturates at the 2D classical value

Ucl2D
b after about 3 ns. In a later nonlinear stage, the vorticity

inside the bubble increases to the point that a large vortex

reaches the bubble vertex and accelerates the bubble beyond

the classical value Ucl2D
b . This second bubble acceleration

driven by the bubble vorticity raises the bubble velocity to a

new saturated value �1:9Ucl2D
b [Fig. 2(a)]. The vortex inside

the bubble is the result of the accumulation of the vorticity

initially located at the ablation front and ablated into the

blow-off plasma, and then convected towards the bubble ver-

tex as the ablated plasma fills the bubble volume.

Unlike in 2D, the 3D bubble velocity does not show satu-

ration [Fig. 2(b)]. The classic RTI theory predicts a 3D bubble

velocity Ucl3D
b that is

ffiffiffi
3
p

times faster than in 2D. Instead, in

the 3D ablative case, the bubble velocity greatly exceeds the

classical value Ucl3D
b without reaching saturation throughout

the simulation period. Such an unbounded growth of the bub-

ble velocity is certainly a concern for inertial fusion implo-

sions. This result was confirmed using a different fluid code

AstroBEAR.25 The detailed comparison between the two codes

will be presented in a future publication.

III. THEORETICAL ANALYSIS AND DISCUSSIONS

To better understand the time evolution of the bubble,

we have extended to 3D the Layzer-like3,4 model of the

bubble-acceleration mechanism due to vortexes of Ref. 12.

A well-developed ARTI bubble with the vortexes inside at

different stages is shown in Figs. 3(a) and 3(c). The model

considers two incompressible fluids (j¼ h, l) of densities qj

with a velocity field vj satisfying r 	 vj ¼ 0. In a frame of

reference moving with the unperturbed target, the momen-

tum equation reads as qjð@tvj þ vj 	 rvjÞ ¼ �rpj � qgez.

The interface separating the two fluids z¼ za(x, y, t) is

expanded very close to the vertex of the bubble (x¼ y¼ 0)

as zaðx; y; tÞ ¼ aðtÞ � aðtÞx2 � bðtÞy2, where a(t) is the bub-

ble amplitude and ½2aðtÞ��1; ½2bðtÞ��1
are the curvatures

along the x- and y-directions. In the surrounding heavy fluid

j¼ h, the flow is potential, vh ¼ r/h and r2/h ¼ 0. Under

a Layzer type approximation, the potential /h is written as

/h¼/1ðtÞexp½�kyðz�aðtÞÞ�cosðkyyÞþ/2ðtÞexp½�kzðz�aðtÞÞ�
cosðkxxÞ. For the low density fluid inside the bubble,

we assume that the velocity field is given by a potential flow

plus a prescribed rotational flow, that is, r�vl¼x¼�x1

sinðkyyÞex�x2sinðkxxÞey and vl¼r/lþ½k�1
y x1ðtÞ cosðkyyÞ

þk�1
x x2ðtÞcosðkxxÞ�ez. Here /l also satisfies r2/l¼0 and

is taken as /l¼lðtÞzþu1ðtÞexp½kyðz�zaÞ�cosðkyyÞþu2ðtÞ
exp½kxðz�zaÞ�cosðkxxÞ. The interface equation is determined

from the requirement that surface particles move with the

fluid (ablation is neglected at the vertex of the bubble): at za

we have the kinematic condition @tzaþvj	rza �vj	ez¼0. For

a given x1(t) and x2(t), these equations are expanded up to

O(x2) and O(y2), yielding six ordinary differential equations

FIG. 2. Ratio of the bubble velocities to the classical values in 2D (a) and

3D (b) simulations for an initial perturbation with k¼ 10 lm. The squares

are the simulations and the solid curve is the 3D analytic model of Eq. (3).
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(ODEs). Also note that the pressure must be continuous

through the interface, ph¼pl. Integrating the momentum

equations and expanding up to O(x2) and O(y2) terms,

the two relevant equations [O(x2) and O(y2)] are

obtained. The set of eight ODEs for the eight unknowns

aðtÞ;/1ðtÞ;/2ðtÞ;u1ðtÞ;u2ðtÞ;aðtÞ;bðtÞ, and l(t) determines

the solution of the problem.

In the case of a square box, namely, ky¼ kx¼ k,

x1(t)¼x2(t)¼x0(t). The symmetry of this configuration

leads to a ¼ b; /1 ¼ /2, and u1 ¼ u2. The final ODE for

the 3D bubble velocity vb is found to be

_vb ¼
g 1� rdð Þ � kv2

b þ rdk�1 x2
0 þ 2 _x0

� �
1þ rd

: (2)

If a steady vorticity can be reached ( _x0 ¼ 0), or _x0 
 x2
0, a

saturated value of vb can be found as

Urot3D
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 1� rdð Þ

k
þ rd

x2
0

k2

r
; (3)

where Urot3D
b is the asymptotic 3D bubble velocity. This is a

semi-analytic formula for the bubble velocity with a pre-

scribed x0 that can be obtained from the simulation.

Figure 2(b) shows good agreement between the bubble

velocities from the simulation and Eq. (3). The simulated

bubble velocity (square) grows from the ablation velocity

in the linear stage and approaches Urot3D
b (solid line) later

in the nonlinear stage. In this comparison, g, rd, and x0 are

all from the instantaneous values of the simulation. x0 is

chosen as the spatial average of the vorticity below the

bubble tip

x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
V

q x2
x þ x2

y

� �
dV

2

ð
V

qdV

vuuuuut ; (4)

where V is the volume inside the bubble and within the

length of 1/k down from the bubble vertex.

It is the different vortex behavior that causes the lack

of saturation of the 3D bubble with respect to 2D. The vor-

tex structure is more complicated in 3D than in 2D. In 2D,

a pair of straight vortexes are formed perpendicular to the

plane of the bubble. In 3D, the vortex is in the shape of a

ring inside the bubble. In the early stage, the vortex ring

has a regular shape. A quarter of it is shown in Figs. 3(a)

and 3(b). The vortex ring evolves into a distorted shape as

shown in Figs. 3(c) and 3(d). While a vortex ring is unsta-

ble when free in open spaces,26 it is believed that the dis-

tortion of the vortex ring in this case is due to the shape

distortion of the bubble wall enclosing the vortex. As

single-mode bubbles grow, they expand and squeeze each

other to form a square-like shape at the bubble waist while

maintaining a round shape near the bubble vertex. Since the

vortex ring cannot maintain a perfect round shape inside

the “square” bubble walls, it becomes warped with the cor-

ners of the ring folded toward the bubble vertex [Fig. 3(d)],

pushing the center (maxima) of the vortex toward the bub-

ble tip. This increases the vorticity near the bubble tip,

hereby enhancing the bubble acceleration. This positive

feedback on the bubble acceleration is unique to the 3D ge-

ometry and prevents the bubble velocity from reaching a

saturated state. Later in time, the behavior of the 3D vortex

ring involves twisting and stretching/compressing and the

vortex shape can no longer be well characterized by a sim-

ple ring.

Shorter-wavelength modes exhibit stronger bubble

acceleration. A series of 3D simulations with a wavelength

ranging from 7 to 40 lm have been performed to study the

bubble acceleration’s dependence on the wavelength. The

bubble velocity’s evolution in each case is plotted in Fig. 4

together with the analytic formula Urot3D
b . In general, Urot3D

b

predicts reasonably well the asymptotic behavior of the bub-

ble velocity in the nonlinear stage for all of the simulated

wavelengths. Good agreement is observed (<10% in bubble

velocity) between theory and simulations over most of the

bubble evolution. Discrepancies are only significant at later

times when the bubble velocities are well above the classical

FIG. 3. Iso-surfaces of the azimuthal vorticity x/ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þx2
y

q
inside a

quarter of a bubble in the 3D simulation of k¼ 10 lm at t¼ 4.0 ns [(a) and

(b)] and t¼ 4.7 ns [(c) and (d)]. (a) Outer: x/ ¼ 12:5=ns; inner:

x/ ¼ 19=ns. (c) Outer: x/ ¼ 25=ns; inner: x/ ¼ 40=ns. The inner surfaces

of (a) and (c) are zoomed-in in (b) and (d), respectively. The arrow in (d)

indicates how the vortex ring gets distorted. Two density iso-surfaces are

also plotted as meshes in (a) and (c). Upper mesh: q¼ 4.5 g/cm3; lower

mesh: q¼ 1.5 g/cm3.
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values and the bubbles have almost penetrated through the

entire slab of dense fluid. For the long-wavelength case with

k¼ 40 lm, the vortex-acceleration effect is weak and the

bubble velocity slightly exceeds the classical value. For the

shorter wavelengths (k¼ 7, 10, 20 lm), the bubble velocity

does not achieve saturation during the simulation time.

Therefore, terminal bubble velocities of short-wavelength

modes can exceed those of longer wavelengths even though

their classic bubble velocities Ucl3D
b are smaller.

As the bubbles of the light fluid penetrate through the

heavy fluid, a density plateau inside the bubble is estab-

lished. The density inside the bubble depends on the mode

wavelength. The value of density inside the bubble is

approximately constant as the bubble grows deeply into the

nonlinear phase. Determining the bubble density is important

to assessing the amount of material from the cold fuel and/or

from the outer ablator that is injected inside the hot central

DT plasma in an inertial fusion implosion. The main conse-

quence of this material-mixing process is the reduction of

the fusion reactivity in the central plasma. Figure 5 shows

that the bubble density increases at shorter wavelengths,

indicating that short-wavelength modes can be effective in

driving mix in ICF.

IV. SUMMARY

To summarize, a fluid code ART3D has been developed

and used to study the nonlinear evolution of the ablative

Rayleigh-Taylor instability in three dimensions. As the mode

wavelength approaches the cutoff of the linear spectrum

(short wavelength modes), it is found that the 3D terminal

bubble velocity greatly exceeds both the 2D value and the

classical 3D bubble velocity. Unlike in 2D, the 3D short-

wavelength bubble velocity does not saturate. A Layzer-like

model has been developed and can quantitatively explain the

3D bubble acceleration driven by the unbounded accumula-

tion of vorticity inside the bubble. The vorticity’s build-up

inside the bubble is caused by mass ablation. Mass ablation

convects the vorticity generated by the Rayleigh-Taylor

instability of the ablation front into the low-density ablated

plasma. As the ablated plasma flows into the bubble, it car-

ries its vorticity inside the bubble and produces a strong vor-

tex near the bubble tip. The centrifugal force of this vortex

drives the bubble acceleration beyond the classical terminal

velocity. The simulations indicate that the density inside the

bubble is larger at shorter wavelengths, implying that short-

wavelength modes are more effective in driving mix than

long wavelength modes.
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