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Abstract 

This paper presents an algorithm for inclusion of thermal conduction in a 2-D hydrodynamic code for compressible 
inviscid plasmas. The code is flexible for a wide series of applications in astrophysics, solves the hydrodynamic equations 
in conservative form in the most used coordinate systems and is based on an explicit fully 2-D flux corrected transport 
technique (FCT). The algorithm separates the energy equation in two distinct sections, characterized by different integration 
time steps (time splitting). The dynamic section is solved with the usual FCT scheme; the thermal section is solved using 
an implicit alternating-direction numerical scheme, which ensures unconditional numerical stability. The formulation is such 
to describe the plasma energy evolution also in non-uniformly spaced grids and in different coordinate systems. A whole set 
of tests of increasing complexity are presented to check the accuracy of the code. 

1. Introduction 

A previous paper [ 1 ] has described a general 2-D 
hydrodynamic code flexible for a wide series of  ap- 
plications in astrophysics. It solves the hydrodynamic 
equations in conservative form in the most used coor- 
dinate systems and is based on an explicit fully 2-D 
flux corrected transport technique (FCT). It owes its 
wide generality and applicability to the different ge- 
ometries which can be optionally selected, to its accu- 
racy in the description of steep gradient regions and 
shocks, to the flexibility in including additional phys- 
ical effects, and to a good efficiency for speed. The 
code performs well on an extensive set of demanding 
non-linear tests, which have allowed a fine tuning of 
the FCT numerical parameters for best accuracy. 

The first application of the code was to study the 
thermal stability of radiatively-cooling isobaric pertur- 
bations inside isothermal stratified atmospheres [2]. 
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The relative accuracy and efficiency for speed of the 
code has allowed the extensive exploration of the rele- 
vant space of the parameters and therefore the accurate 
definition of the boundary between thermal stability 
and instability, determined by the competition between 
radiative cooling and dynamic dissipative effects, like 
Kelvin-Helmoltz and Rayleigh-Taylor instabilities. 

The present paper describes the extension of the 
2-D FCT hydrodynamic code to include the descrip- 
tion of plasma thermal conduction. Energy transport 
by conduction in a high temperature plasma is in fact 
very effective, due to the T 5/2 dependence of conduc- 
tivity. The inclusion of thermal conduction cannot be 
simply obtained by a straightforward extension of the 
FCT explicit numerical scheme, i.e. the linear addi- 
tion of new terms in the equations already solved by 
the code. The highly non-linear dependence on tem- 
perature does in fact require an implicit scheme to en- 
sure unconditional numerical stability [ 3 ]. In the ap- 
proach presented here the effect of thermal conduction 
is computed as a separate section of the energy equa- 
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tion, with its own characteristic integration time steps 
and using an alternating-direction implicit (ADI) nu- 
merical scheme. This "time-splitting" approach has al- 
lowed to maintain the structure of the original FCT 
code substantially unaltered. 

The above mentioned ADI, FCT and time-splitting 
techniques are singularly well-known from specialized 
literature [3] but this code assembles them homoge- 
neously for general 2-D geometries, thereby allowing 
to access a new segment of astrophysical plasma prob- 
lems, the description of thermally-conducting plasma 
flows in multi-dimensional systems. An analogous ap- 
proach has been mentioned, but with no application 
to actual plasma problems, by Malagoli et al. [4] for 
a 2-D code based on the Piecewise Parabolic Method. 
The present code has been tested against a whole se- 
ries of problems, reported here in detail, and already 
applied in its full functionality to study how the ther- 
mal stability of stratified atmospheres is influenced by 
plasma thermal conduction [5]. 

The paper is organized as follows: Section 2 briefly 
reviews the FCT explicit scheme of the 2-D hydrody- 
namic code; Section 3 describes in detail the insertion 
of thermal conduction in the code; Section 4 reports 
on some testing on the upgraded code; conclusions are 
drawn in Section 5. 

2. The FCT c o d e  

The code solves the equations of mass, momen- 
tum and energy conservation for a compressible fully- 
ionized non-viscous fluid: 

On - -+V. (nv )=O,  (1) 
Ot 

O(nv___._~)+V.(nvv) = 1 V p  + Q____KF, (2) 
0t m m 

cgU 
~.  + v .  [(u + p ) v ]  = O~r . v + Q ~ ,  (3) 
t d  

where 

u=½mnv2+C, p = ( y -  1)g ,  

and where y = 5/3, n is the particle volume den- 
sity, p the pressure, m is the average mass per particle 
(m = 2.1 x 10 -24  g for solar abundance), v is the 

plasma bulk velocity, QF includes all relevant exter- 
nal forces, such as gravity, Qe all relevant thermal en- 
ergy sources and losses, such as an external heating, 
radiative losses. 

The numerical solution is based on an explicit fully 
two-dimensional Flux Corrected Transport scheme 
[ 6-10], with some improvements, and solves the fluid 
equations in conservative form, thus enforcing the 
conservation of quantities. Possible source terms are 
treated independently (e.g. [2] ). The scheme con- 
sists first of a transport step, in which the density of 
any of the relevant physical quantities is transported 
according to the local velocity field. The transport is 
expressed as variation of the density in a cell due to 
opposite contributions of outflows and inflows in a 
time step. The inflows/outflows are computed as half- 
indexed quantities with respect to the coordinates, 
i.e. they are computed at the center of the side of the 
cell across which they flow. Therefore the values of 
velocity and density derive from an interpolation. In 
particular we average between the values at the two 
grid points bounding the side of the cell. 

The cell areas and volumes appear only through 
multiplications and divisions in the whole code. This 
allows for a straightforward switching among different 
geometries. In particular we have implemented the 2- 
D geometries corresponding to all possible choices 
of 2-D Cartesian, cylindrical and spherical coordinate 
systems. 

After transport, the quantities are artificially dif- 
fused in order to inhibit numerical instabilities and er- 
rors. This diffusion is partly compensated for by an 
explicit antidiffusion step, corrected with a non-linear 
numerical filter (the so-called limiter) which enforces 
local monotonicity of the solution and is tuned to pro- 
vide the "best" balance between accuracy and stability 
(it is adjusted by testing the code on specific model 
problems for which the exact solution is known). More 
specifically, the code used here adopts Scheme C of 
Reale et al. [ 1 ], in which the limiter is a hybrid be- 
tween the one devised by Zalesak [9] (see also KOssl 
and Miiller [ 11 ] ) and that originally developed by 
Boris and Book [6]. The diffusion (/.t) and antidiffu- 
sion (v) coefficients along each of the two directions 
are those suggested by Boris and Book [8]: 

/ x = l / 6 + l / 3 e  2, v = l / 6 -  1/6e 2, 

where 
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At 
e = A o - -  

AS2" 

At is the integration time step, Ag2 is the local volume 
element centered on grid point, v is the component of 
the local velocity along one direction, A is the area 
element perpendicular to the flux direction, i.e. across 
which the flux flows. 

As for the limiter, the code adopts the two- 
dimensional flux limiter devised by Zalesak [9] 
(see also [10]) ,  and used also by K6ssl and Miiller 
[ 11 ], hybridized with the addition of the strong one- 
dimensional limiter of Boris and Book [6,8] as a 
"pre-limiting" step (see also [9] ); the use of this lim- 
iter is possible only within a fully two-dimensional 
FCT approach. 

The code is highly reliable for describing shocks 
and steep gradient density distributions and, in contrast 
with other FCT implementations, maintains fairly reg- 
ular behavior in regions where fluid dynamical quan- 
tities are expected to vary smoothly. Moreover, this 
implementation of FCT enables one to use a relatively 
large Courant number (0.7 - 0.8). 

In the full version of the code as described in Reale 
et al. [ 1 ], we repeat the whole procedure including 
the advection scheme, the diffusion and the antidiffu- 
sion steps twice for each time step, first for the half 
and then for the full time step [ 10], to ensure a sec- 
ond order accuracy in time integration. Later, however 
[2], we have introduced a small modification in or- 
der to increase the calculation speed: the antidiffusion 
stage is skipped in the calculation of quantities for the 
half time step. We have redone the 2-D hydrodynamic 
tests reported by Reale et al. [ 1 ] using this simplifi- 
cation, and have found that the results remain essen- 
tially unchanged, with a ,-~ 40% improvement in the 
calculation speed [2]. 

3. 2-D thermal conduction 

The inclusion of thermal conduction (we use the 
formulation of Spitzer [ 12]) changes the energy 
Eq. (3) into: 

tgu 
- -  + V .  [(u + p)v]  = @ v "  V + Q e  -- V F c ,  (4) 
tO 

15 

T = p Fc = - K T 5 / 2 • T  , 
2kn ' 

T is the temperature of the atmosphere, K is the plasma 
thermal conductivity (assumed isotropic for simplicity 
in these expressions). 

As mentioned before, this equation is solved in two 
separate phases, involving different numerical algo- 
rithms and different integration time steps (time split- 
t ing).  One phase involves the evolution dictated by 
purely thermal processes, i.e. conduction, heating and 
energy losses, which usually occur over time scales 
shorter than the dynamic time scales. The correspond- 
ing equation can be written as a temperature equation: 

aT _ y -  1 [ - V F c  + QE] • (5) 
at 2nk  

Then we have to take into account the dynamic 
evolution, occurring on larger time scales: 

0u 
0t  + V .  [(u + p ) v ]  = QF . v .  (6) 

Eq. (6) is solved with the usual modified FCT 
scheme, together with Eqs. (1) and (2),  and the in- 
tegrating time step is given by the Courant condition 
[3,13]: 

As 
- - ,  (7) 

Atdy < Ivl + c, 

where As is the smallest of the two sides of a cell and 
Cs is the sound speed. 

Eq. (5) is solved implicitly according to the method 
described in Richtmyer and Morton [ 3], which en- 
sures unconditional numerical stability. In particular, 
if Eq. (5) is indicated schematically with the tbllow- 
ing functional form: 

Of O2f ~ O2f a 
0--7 = trx c~x----- ~ + try c~y----- T- + S ( x ,  y ) ,  (8) 

where f _= T, x and y are generically the two or- 
thogonal coordinates, O-x, try are the respective ther- 
mal conductivity coefficients, a = 7/2 for our specific 
case, S ( x ,  y )  indicates whatever source term outside 
the non-linear second order terms, the integration of 
Eq. (8) is carried out in two half time steps, according 
to the following finite difference representation: 

fn+l/2jk - f ~  

where A t 
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(9) 

"1 

= -  O'x 2 ~ n+l/2 y ( f  ) ]  1 [[~----xZ6~(f ) + AY 20"y 62 a n 
2 ] 

1 . 

f jn+l f ; ; l / 2  
k - -  " 

At 

= 21 L O'x 62(fa)n+l/2x a + ~ Y  26y(fOry 2 a ) n+l]j 

..~_l ¢,n+l/2 
~ j k  , (10) 

where 6x2f = fj+lk - 2 f j k  + f j - l k  and 6~f  = fjk+l - 
2fjk + fj~-1, and, for the sake of simplicity, we have 
assumed a grid equispaced along the two directions, 
with cell sides Ax and Ay, respectively. Eq. (9),  and 
equivalently Eq. (10), can then be solved by rearrang- 
ing it in the form: 

- -A jkWi+l  k -'b B jkWjk  -- C j k W j - l k  ~- D jk  , ( 11 ) 

where 

fn+l/2 f~k -b jk = n Wj k . 

The solution of this tridiagonal system is: 

wjk = EjkWj+lk + Fjk, (12) 

where 

Ajk 
Ejk -~ 

Bjk - C jkEj -~k  

Fjk = Ojk + Cj~ Fj_  ~_____~k 
Bjk -- C jkEj -~k  " 

This solution is implicit and unconditionally numer- 
ically stable [3] and, as clear from Eqs. (9) and (10), 
the method is an alternating-direction method. 

The integration time step Aten in this section is ruled 
by the local characteristic times of conduction and 
energy sources. In particular we use: 

Aten = m i n (  Atcond, A t a  ) , 

where 

nk As 2 
A tcond -- ( y -  1)KTS/2 ' 

As being the minimum between Ax and Ay, and 

AtQ = P 
( y -  1 )Q ~ '  

Q~ being the most important among the energy source 
terms. As a further constraint, we also impose an upper 
limit (presently 10%) on the local variation of the 
temperature in a time step. 

As mentioned above, in general Aten 4= Atdy, SO 
that Eqs. (5) and (6) will be integrated on differ- 
ent time steps. In conditions of typical astrophysical 
systems we usually have Aten < Atey. Therefore we 
match dynamic and energetic stages by counting as 
many Aten'S as necessary to cover a single Atay, the 
last step in a sequence of energy integrations being 
given by the time difference to match exactly the dy- 
namic time step. If it happens that Aten > Atdy, then 
the shorter time interval is used. 

As for boundary conditions, we can now choose also 
either a fixed temperature or a zero temperature gra- 
dient, as boundary conditions on the energy equation. 

In order to handle also non-uniformly spaced grids 
and different coordinate systems, we have simply gen- 
eralized the expressions for the gradients and diver- 
gences in Eqs. (9) and (10) by expressing Axj and 
Ayk as ratios of the corresponding cell volume and 
side area. 

The flow chart of Fig. 1 shows how the code appears 
to be structured after the inclusion of plasma thermal 
conduction. The code can be conceptually seen as di- 
vided into three sections: a) initial conditions, b) ther- 
mal section, c) dynamic section. The first section con- 
cerns the selection and preparation of the initial con- 
figuration, of the boundary conditions, and of all the 
relevant parameters required to calculate the plasma 
evolution. The thermal section includes the implicit 
numerical scheme for the calculation of the thermal 
conduction, which is characterized by the the ther- 
mal time step. As soon as the thermal integration time 
sum up to a single dynamic time step, dictated by the 
Courant condition, the code switches to the dynamic 
section. Here the FCT scheme is at work on the four 
conservation equations and the time step is the dy- 
namic step. 

The increment in computer time due to the exe- 
cution of the new section of the code, the thermal 
conduction section, amounts to ,~ 30% for systems 
in which the thermal time scale is equal to the dy- 
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Fig. 1. Flow chart of the 2-D hydrodynamic code in the configuration including the description of plasma thermal conduction. We have 
identified three main sections (initial conditions, thermal section, dynamic section). We indicate with DtC the total integration time inside 
the thermal section and with dtD the dynamic time step. tF is the selected final time. 
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namic time scale. In general the expected shorter ther- 
mal time scales, which will strongly depend on the 
specific temperature conditions of the selected atmo- 
sphere, will further enhance the fraction of computer 
time spent in the conduction section. However, the 
time-splitting technique approach can be always con- 
sidered as a time-saving approach, since we use sev- 
eral integration time steps tailored to the specific phys- 
ical processes involved, instead of a single time step, 
namely the smallest one. 

4 .  T e s t i n g  

As done with the previous versions of the code, 
we have tested the upgraded code through the com- 
putation of problems with known solutions. We have 
considered gradually higher levels of complications, 
starting from pure conduction 1-D problems, therefore 
testing only the conduction section of the code, and 
ending with the evolution of spherical perturbations 
inside isothermal conducting atmospheres, for which 
analytic solutions are not available. 

4.1. Pure conduction tests 

In these tests the plasma is assumed permanently 
static and with a uniform and "frozen" density distri- 
bution. Therefore only thermal conduction across the 
plasma is considered, i.e. only Eq. (5) is solved. 

4.1.1. Steady solutions 
We have first to computed the evolution of the non- 

trivial plane parallel steady solution of a conducting 
plasma with fixed non-equal temperatures (To, Tl ) at 
two extremes (s0 = 0, sl, where s can be either x 
or y Cartesian coordinates) of a Cartesian grid. The 
plasma is kept at uniform constant density and plasma 
dynamics is neglected. The steady-state distribution of 
temperature is: 

directions, with To = 105 K and 7"1 = 107 K at sl = 
10 l° cm with 100 cells along the relevant direction. 
Zero-gradient boundary conditions are assumed along 
the direction orthogonal to s. Over ~ 4000 integration 
steps the solution does not change more than 10 -6 
with respect to the initial profile. 

We have also performed the same test, with the 
same results, in a cylindrical coordinate system (r, 0), 
where the analytic solution is: 

2/7 F|.(TI/To) 7/2 _-- 1 In ( r / r o )  + lJl . (14) 
T(r) =To [ ln(r~/ro) 

4.1.2. Propagation of a plane pure conduction front 
We have considered the propagation of a plane 

pure conduction front in a uniform high temperature 
plasma. 

The equation solved for the propagation along the 
direction s is: 

at a~ss Tn ' (15) 

where n = 5/2 in our case. 
For this problem an analytic solution is available as 

a self-similar solution [ 14], which can be found by 
setting: 

s 
( =  aQntl/(n+2 ) 

as dimensionless parameter, where Q is the integral of 
T over the whole space. The solution is then given by: 

T=Tc 1 - 

where 

(Q2)l/(n+21( n ~ 2 )  

Tc = -aT 2(n 

Sf -~ (aQnt) l/(n+2)(0 , 

(16) 

I/n 

T(s) To[ (T1/TO)7/2-1 ]2/7 
= - -  s + l  . 

L sl 
(13) 

The expected time-dependent solution of this problem 
is that the temperature distribution remains constant all 
the time. We have performed this test with the initial 
plane parallel profile along each of the two orthogonal 

[(  n + 2) 1+~21_.l 1/(~+2) 

[ j 
[/'(1/2 + l/n) 1"/<"+2) × [ 

and F is the gamma function. 
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Fig. 2. Propagation (rightwards) of a plane parallel pure con- 
duction front. Comparison of temperature distributions along the 
direction of propagation as computed numerically with the code 
described in the text (dashed lines), sampled every 0.5 s, with 
the corresponding analytic solutions (solid lines). 

Fig. 3. Propagation of a spherical pure conduction front. Com- 
parison of temperature distributions along the radial direction as 
computed numerically with the code described in the text (dashed 
lines), sampled every 1 s, with the corresponding analytic solu- 
tions (solid lines). 

We have described the propagation of  the front start- 
ing from the analytic solution at t = 0. I s for a plasma 
with a density of  101° cm -3 and with the integral of  
temperature 1.2 × 1015 K cm, so that the maximum ini- 
tial temperature is at 4.2 x 106 K. Zero-gradient con- 
ditions on temperature are assumed at all boundaries. 
The propagation computed numerically is in good ac- 
cord with the analytic solution, as shown in Fig. 2. 

4.1.3. Propagation of a spherical pure conduction 
front 

A test similar to the previous one is the description 
of  the propagation of  a spherical conduction front in 
a uniform plasma. In this case we can test the code 
for computations in a coordinate system different from 
the Cartesian. 

Also for this problem it is possible to obtain an 
analytical solution: 

T = T, 1 - , (17) 

where 

4 3 n(~ ]l/n Q T,. x- J 4 3 ' .~ 7r(i 2(3n  + 2) ~orrf 

rf = (aQnt)I/(3n+2) (1 , 

= { 3n + 2 )1/(3"+2) 
4~ 22"-~n----~--" 

r r(s/Z+l/n) ]./~3.+z~ 
x [ r ( ~  ~ / ~ F - - ( 3 - / 2 )  J 

We have computed the numerical solution in a 
spherical coordinate system (r,  0) ,  taking as ini- 
tial profile the analytical solution at t=0.05 s, for 
Q = 1030 K cm 3 and density 10 l° cm -3.  The grid is 
101 x 21 cells, w i th0  < r < 108 cm a n d 0  < 0 < 
~-/2. The resulting propagation, compared with the 
analytical solution, is reported in Fig. 3. 

4.2. Tests with both thermal conduction and plasma 
hydrodynamics 

4.2.1. Propagation of a plane parallel conduction 
front 

Now we describe the propagation of  a plane con- 
duction front including also the plasma hydrodynam- 
ics. Therefore this is no more a pure conduction front, 
but the propagation is complicated by the presence of 
the plasma dynamics, and the code is now tested in 
its full functionality, i.e. the whole set of  Eqs. (1) ,  
(2) and (4) are solved, in particular with QF = 0 
and Qe = 0. We take as initial conditions the same as 
in Section 4.1.2. Since the density distribution of  the 
plasma is initially uniform, the presence of a thermal 
front implies also the presence of a strong pressure 
wave which will eventually determine a significant 
plasma motion in the same direction as the conduction 
front. In Fig. 4 we report results for this test in terms 
of temperature, particle density, pressure and veloc- 
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ity distributions along the direction of propagation at 
some selected times during the first 3 s of propaga- 
tion. If we look at Fig. 2, we notice that the conduction 
front propagates through ,-~ 2 108 cm in 3 s. The mean 
propagation speed is therefore ~ 700 km/s during that 
time, much larger than the mean plasma sound speed 
(for T ~ 2 106 K, Cs ~ 200 km/s).  This means that 
we are still in conditions for which the front propa- 
gates almost as a pure conduction front and that we can 
still compare the numerical solution with the analytic 
solution of Eq. (15). Of course, we expect a detach- 
ment from the analytic solution as soon as the con- 
duction speed is significantly reduced and approaches 
the plasma local sound speed, i.e. when the front tem- 
perature is reduced significantly from the initial high 
value. Indeed we see in Fig. 4d that the local plasma 
velocity increases with time, although well below the 
sound speed. Also the density begins to change sig- 
nificantly at late times (Fig. 4b), when a density front 
is forming, as a consequence of the pressure front. At 
late times the conduction front computed numerically 
propagates slightly faster that in the analytic solution 
because of the additional shift due to the plasma bulk 
motion. 
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Fig. 4. Propagation of a plane parallel conduction front including 
the description of the plasma hydrodynamics. Temperature (a) 
(dashed --- analytic, solid = numerical), density (b), pressure (c), 
velocity (d) distributions sampled every 0.5 s are reported (cf. 
Fig. 2). 

4.2.2. Propagation of a cylindrical conduction front 
In this test we have taken advantage of the possi- 

bility to switch easily among different coordinate sys- 
tems. We have computed the propagation of a cylindri- 
cal conduction front in a plasma in two different geo- 
metric grid systems, so that we could compare two sets 
of numerical results obtained independently for the 
same problem, and check if they are self-consistent. 
In particular we have described the propagation both 
in a cylindrical coordinate system ( r  and 0) and in a 
Cartesian coordinate system. In the former the evolu- 
tion is effectively a 1-D propagation along the radial 
direction, similarly to the test in Section 4.1.3. In the 
Cartesian coordinate system this is instead a proper 2- 
D problem, with radial symmetry with respect to the 
origin. We have taken as initial configuration a plasma 
with uniform density (109 cm -3) and the same tem- 
perature distribution as in Section 4.1.2 along the ra- 
dial direction r. We have followed the front propaga- 
tion for 3.3 s. 

In the test with the cylindrical coordinate system 
the grid is 150 x 10 cells (along 0 a fine resolution 

is not necessary), with 0 < r < 1.5 x 108 cm and 
0 < /9 < Ir/2. The Cartesian grid is a square grid 
of 150 × 150 cells. In both cases we have set zero- 
gradient boundary conditions at all boundaries. 

In Fig. 5 we compare the results at sampled times 
along the radial direction of the computation in cylin- 
drical geometry (solid lines) to the one in Cartesian 
geometry (dashed lines). We find a generally satisfy- 
ing accord between the two different computations. As 
evident from the temperature distributions the thermal 
front propagates at the same speed in the two cases, 
the temperature being slightly lower in the Cartesian 
computation. The front speed is the same also for den- 
sity, pressure and velocity fields. The most significant 
difference between the results in the two cases is in 
the density distribution at the final time. In fact the 
peak of the rightward density front is higher (but by 
only 10%) in the Cartesian case than in the cylindrical 
case. This difference is to be ascribed to the different 
grid systems used which necessarily imply a differ- 
ent spatial resolution, which influences especially the 
description of spikes. 
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Fig. 5. Propagation of a cylindrical conduction front including 
plasma hydrodynamics computed with the same 2-D code but 
using two different coordinate systems, cylindrical (r,O, solid 
lines) and Cartesian (dashed lines). Temperature (a), density 
(b), pressure (c) and velocity (d) distributions along the radial 
direction sampled every 1.1 s since t = 0 are reported. 

4.2.3. Steady hydrostatic atmosphere 
We have checked for the stability of a hydrostatic 

coronal loop as computed according to the static model 
of Serio et al. [ 15 ]. The atmosphere is derived by solv- 
ing the detailed time-independent mass, hydrostatic 
and energy equations, including the effects of grav- 
ity, thermal conduction, and radiative losses from an 
optically thin plasma with solar abundance, and with 
a term of uniform steady heating. The temperature in 
the corona is above 106 K and decreases downwards 
to the solar surface with increasing steepness. A very 
steep transition region links the corona to the chro- 
mosphere. The base of the transition region has been 
carefully matched together to a model chromosphere 
taken from the models of Vernazza, Avrett and Loeser 
[ 16]. The chromosphere is in hydrostatic equilibrium 
with the upper atmosphere, and its energy balance is 
ensured by an "ad hoc" temperature-dependent heat- 
ing function [17]. In other words, the steady-state 
heating function is uniform in corona and transition 
region, and non-uniform and temperature dependent 
in the chromosphere (T < 20000 K). Such heating 
function ensures the unconditional global thermal sta- 
bility of the atmosphere [ 17]. 

As a test for the code we have let the atmosphere 
evolve from the hydrostatic state computed with the 
time-independent model. The specific momentum and 
energy equation solved for this problem are: 

a ( nv___~) 
+ V .  (nvv) = - l v p  + ng,  (18) 

8t m 

o~u 

8t  + V .  [(u + p ) v ]  

= mng.  v - n2p(T)  + ~ ( r )  + XTFc, (19) 

where the temperature dependence of the radiative 
losses function is a piece-wise power law P(T )  = 
flT'L where the constants fl and a assume different 
values in different temperature ranges, as prescribed 
in Rosner et al. [18], 7-/is the local heating function, 
assumed independent of time, built in such a way as to 
maintain steady the initial atmosphere, balancing the 
energy loss terms, like the radiative losses. 

In this case we have considered a cylindrical coordi- 
nate system: the vertical Z and the radial r coordinate; 
therefore we assume rotational symmetry around the 
Z-axis and a logarithmic grid spacing along Z. In par- 
ticular the smallest grid cell is at the base of the tran- 
sition region and the spacing increases both going up- 
wards (transition region and corona) and downwards 
(chromosphere) from there. The grid is equally and 
roughly spaced along r since we expected, and indeed 
obtained, a plane parallel evolution of the atmosphere. 
As boundary conditions we have fixed all quantities 
at the lower and upper boundaries of the atmosphere, 
and zero-gradient conditions at the outer boundaries. 

As a result of the time-dependent computations, we 
expected the atmosphere to relax toward a steady state, 
at least almost hydrostatic, similar, but not identical, to 
the initial state, since the hydrostatic model had been 
computed on a different grid than the one used in the 
time-dependent numerical model. As a result, Fig. 6 
shows a section along the Z-axis of the temperature, 
density, pressure and velocity distributions at the be- 
ginning and after 1000 s of evolution of a loop with 
a pressure 3 dyne cm -2 at the base of the transition 
region. This is a reasonably long time with respect to 
the conduction propagation time and to the radiative 
cooling time. The distributions of temperature, density 
and pressure show practically no evolution. The ve- 
locity field is affected by some numerical noise, espe- 
cially at the interface between the chromosphere and 
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Fig. 6. Stability of a hydrostatic coronal loop atmosphere; section 
along the Z-axis of the temperature, density, pressure and velocity 
distribution at the beginning and after 1000 s of evolution of a loop 
with a pressure 3 dyne cm -2 at the base of the transition region. 

the corona, which, however, is very steady and only 
a few percent of the speeds typical of coronal plasma 
motions. 

4.2.4. Evaporation o f  an isobaric spherical 
condensation 

As a final test we have considered a fully 2-D com- 
putation including hydrodynamics and isotropic ther- 
mal conduction. We have described the evolution of a 
spherical isobaric condensation initially set up inside 
an otherwise isothermal and uniform plasma. The un- 
perturbed initial plasma is at temperature To = 10  6 K 
and density P0 = 109 cm -3, and is static. 

We have considered a spherical uniform condensa- 
tion with a density contrast 6 = ( p  - po ) /po  = 0.1 
and a radius R = 108 cm. The grid is a cylindrical 
grid (z, r) with 150 × 50 cells of size Ar = Az = 107 
cm. We have described only half of the relevant space, 
since the evolution is symmetric with respect to the 
Z-axis. Therefore the center of the perturbation is lo- 
cated at r = 0 and we have posed the radial speed 
vr = 0 at r = 0. At the other boundaries we have set 
zero-gradient conditions for all quantities. 

Since the perturbation is isobaric, the temperature 
inside the perturbation is initially 10% lower than out- 
side. In the absence of major pressure forces the evo- 

lution of the system will be governed mainly by the 
plasma thermal conduction. Heat will be transported 
inwards from outside to the center of the perturba- 
tion, so to reduce the temperature gap. The perturba- 
tion gradually expands (because the temperature gra- 
dient will propagate outwards) isotropically, but its 
intensity decreases, until it will eventually fade out. 
The characteristic time of the evolution is given by the 
conduction time: 

9/ pl  2 pl  2 
rc . . . .  1.4 × 106 (20) 

T -  1 2KT7/2 T 7 / 2  ' 

where p is the local pressure and l represents 
the characteristic length of temperature variation, 
e.g. the size of the perturbation. If we take K = 
9.2 × 10 -7 erg cm - l  s -1 K -7/2 as the conduction 
coefficient, we obtain rc ~ 3.3 s. During this time, 
shorter than sonic propagation times, a pressure ex- 
cess will develop inside the perturbation and this 
will determine a further dynamic expansion of the 
perturbation, and therefore a radial motion. 

In Fig. 7 we report images of the temperature con- 
trast ( ( T  - To)/To) in absolute value with respect to 
the background plasma in the first 3 seconds of evolu- 
tion, and the velocity field. The evolution follows the 
expected pattern in the expected times. The isotropic 
expansion and attenuation of the temperature pertur- 
bation is evident. The maximum temperature contrast 
decreases from 0.1 to 0.025 in 3 s. The radial velocity 
field is also visible with speeds of the order of a few 
km/s. 

5. Conclusions 

This paper presented an algorithm to include the de- 
scription of plasma thermal conduction according to 
Spitzer [ 12] in a 2-D hydrodynamic code for com- 
pressible inviscid plasmas using the Flux Corrected 
Transport technique. The code was developed mostly 
for astrophysical applications, such as cooling flows in 
halos of clusters of galaxies, accretion disks, jet struc- 
tures. The introduction of the description of plasma 
thermal conduction allows to study in detail coro- 
nal structures and in general systems where magnetic 
fields are able to funnel energy transport. Conduction 
is taken into account by the addition of a new sec- 
tion to the code using an implicit alternating-direction 
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Fig. 7. Evolution of an isobaric spherical condensation inside a uniform isothermal atmosphere, under the effect of inward thermal conduction 
from the hotter surrounding atmosphere. The unperturbed plasma is static, with temperature l0 6 K and density l0 9 cm -3. The perturbation 
is initially 10% cooler than the unperturbed plasma. We report grey-scale images, at the labelled times, of the logarithm of the temperature 
contrast above the background atmosphere. The velocity field is also reported as arrows whose lengths are scaled to the maximum speed 
reported in each image (kin/s) .  For each image at t > 0 we report also the maximum temperature contrast in absolute value. 
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numerical scheme totally different from the FCT ex- 
plicit scheme adopted for the description of the plasma 
pure hydrodynamics. The extension of the code has 
been quite straightforward by means of a technique of 
time splitting solving separately the dynamic and ther- 
mal sections of the energy equation. This technique 
allows also a saving of computing time because the 
dynamic and thermal sections are integrated on dif- 
ferent time steps. Although the numerical techniques 
used are well known, this code assembles them ho- 
mogeneously and allows to study quite complex prob- 
lems, like the stability of multidimensional solar coro- 
nal structures [2,5]. We have also presented a whole 
set of tests, with which we could verify the validity 
and accuracy of the code in its various sections. 
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