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Abstract 

We describe a hybrid scheme for cosmological simulations that incorporates a Lagrangean particle-mesh (PM) algorithm 
to follow the collisionless matter with the higher order accurate piecewise parabolic method (PPM) to solve the equations 
of gas dynamics. Both components interact through the gravitational potential, which requires the solution of Poisson's 
equation, here done by Fourier transforms. Due to the vast range of conditions that occur in cosmological flows (pressure 
differences of up to fourteen orders of magnitude), a number of additions and modifications to PPM were required to 
produce accurate results. These are described, as are a suite of cosmological tests. 

I. Introduct ion 

The standard view of the universe tells us that there are two kinds of matter: a baryonic component which 
makes up about 5% of the mass required to stop the universe from expanding forever, and a collisionless dark 
matter that appears to dominate the gravitational evolution of the universe and many of its components. Because 
the dark matter controls the dynamical evolution of the largest structures (r > 5 Mpc), and because the physics 
of the gaseous component is intrinsically much more complex, much effort has been focused on this component 
[6,7]. Unfortunately, we cannot directly observe dark matter and thus have, until recently, depended on the 
assumption that 'light follows mass' (i.e. that the baryonic component will generally follow the distribution of 
dark matter). This is known to be incorrect on scales up to cluster sizes (see, e.g., [1-3] )  indicating a need 
to include the more difficult baryonic physics. 

The physics of collisionless systems has led naturally to the development of particle based methods [4], 
while much success has been achieved in gas dynamics through the use of Eulerian techniques. Therefore, 
we combine a momentum conserving particle-mesh (PM) scheme for the collisionless component with the 
Godunov-based piecewise parabolic method (PPM) [5] for the gas. We have taken pains to use a state-of-the- 
art gas dynamics algorithm because of the demands of hydrodynamic cosmology. Temperatures can range over 
eight orders of magnitude, densities over six orders (neglecting the structure within galaxies) and pressures 
over 14 orders of magnitude. Even worse, many length scales are operating simultaneously: the ratio of the 
separation between clusters to the size of a cluster is about 100, requiring a minimum of 106 resolution 
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elements in three dimensions. PPM is one of the most effective of the shock capturing methods that have been 
developed recently [ 17]; it is formally third order accurate in space, easy to parallelize and quite robust in 
modelling cosmological flows. Even so, the unusual rigors of the cosmological simulation regime require certain 
modifications to the basic scheme. We also describe the changes necessary to make the PPM scheme function 
under limits of low resolution. This is extremely important due to the spectrum of length scales that are active 
in cosmological simulations. Short wavelength fluctuations are modulated by longer ones so both need to be 
treated as accurately as possible. Therefore we must insure that cosmologically interesting phenomena can be 
modelled with as small a number of zones as possible. To document and test the algorithms we have also 
developed a suite of cosmological test problems, the results of which are detailed. 

Other approaches to numerical cosmology have been taken. Almost all use particle formulations of one sort 
or another for the dark matter, but they divide into two classes for the hydrodynamics: Lagrangean particle 
methods such as smooth particle hydrodynamics (SPH) and the Eulerian, hybrid methods. Examples of the 
former are [9,10] and the later codes are typified by [ 11,12]. 

There are still many physical processes that we have not included: the ionization state of the gas (due both 
to radiation and collisions), as well as radiative processes and radiative transfer effects. We will describe our 
efforts to implement the first two in a future paper, however the self-consistent inclusion of radiative transfer 
in such codes must await improved algorithms and better computers. Finally, we remark that magnetic fields 
and heat conduction are likely to play a role in cluster formation (and surely must be important in galaxy 
formation); however, their effects have not been examined here. 

In Section 2, we describe the numerical methods used, with only a cursory description of PM and PPM, as 
they have both been described in adequate detail elsewhere. The cosmological test suite is presented in Section 
3 and our conclusions are drawn in Section 4. 

2. Numerical methodology 

The first ingredient is to implement a particle-in-cell algorithm to trace the evolution of the dark matter. Such 
systems have been in use for many years and are well understood and well tested; for a fine description of their 
application to cosmology, see [6,7]. To be explicit, we implement a particle-mesh, cloud-in-cell [4] method 
with a grid size equal to the hydrodynamic mesh to facilitate the gravitational interaction. The computation of the 
gravitational potential is done by Fourier transform. We start therefore, with a description of the hydrodynamic 
algorithm. 

We must solve the equations of ideal gas dynamics in a coordinate system that is comoving with the 
expanding universe (c.f. [ 13]): 

0P___2 1 _  1 
+ =~; .  Vpb = - - p W -  ~;, ( l )  

Ot a a 

1 
+ - ( v b .  V)b'b = ----V-'b -- Vp -- -V~b, (2) 

Ot a a apb  a 

OE+ l~, b ~E /~ ( 3 P +  ~ )  1 V'(pg'b) l v ' b ' V q b .  (3) 
Ot a a apb  a 

We use the proper peculiar baryonic velocity ~b =- a ( t ) d Z / d t ,  proper pressure p, and modified gravitational 
potential ~ which is related to the potential in proper coordinates ~b by 

1 .- -~.2 
(D = q) + -~ a a x  . 

The density, however, is comoving: 
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p~, -- pt,,prope,'/ a( t ) 3 

The expansion parameter a -- 1/(1 ÷ z) follows the expansion of a smooth, homogeneous background, where 
z, the redshift, is a function only of t. All derivatives are determined with respect to the comoving position 
.,7, which is defined simply to remove universal expansion from the coordinate system: 27 ~ F/a( t ) .  The total 
fluid energy per unit mass (i.e. the specific energy) is E. The first equation represents the conservation of 
mass, the second, conservation of momentum, and the third, conservation of total fluid (kinetic plus thermal) 
energy. They are respectively, the first, second and third moments of the Boltzman equation. We actively solve 
the equation of total energy because of the need to enforce local energy conservation in any shock capturing 
scheme. 

These equations are closed with the equation of state, the comoving form of Poisson's equation and by the 
formula for the expansion of an isotropic, homogeneous universe, which governs the evolution of the comoving 
coordinates: 

E = t,I  [ ( r  - +  12, (4) 

V205 = 4rrG (P~, + PJm - Po), (5) 
a 

~ 4~'G 
a - 3a 3 (P0 + 3po/c 2) + A/3.  (6) 

Here. the densities are of the baryonic matter (pb),  the dark matter (P~m) and the background (P0), while P0 
is the background pressure, y is the ratio of specific heats, and A is the cosmological constant. This system 
of equations is limited to the non-relativistic regime and assumes that curvature effects are not important - 
both assumptions are reasonable as long as the size of the simulated region is small compared to the radius of 
curvature and the Hubble length c / H  (c is the speed of light and H is the Hubble constant). 

The particles are governed by Newton's equations in comoving coordinates: 

d~a,,, I 
- - vain, (7) 

dt a 
dFa,,, i~ 1 

- - v 4 , .  ( 8 )  
dt a a 

The subscript 'din' refers to dark matter particles. 
An outline for the solution of these equations as well as the associated machinery that any simulation code 

must supply is given in Fig. 1. We will return to this figure in Section 2.7, after describing, in some detail, the 
action of each step. 

2.1. Structure of  the cosmological equations of  hydrodynamics 

We can examine the structure of Eqs. ( 1 ) - ( 3 )  to obtain a better understanding of the effect of each term. 
The derivatives are first order in time and provide us with the dependent variables that will be evaluated each 
time step: Pb, b', and E. 

The second term on the left hand side of each relation is due to our choice of Eulerian coordinates and 
corresponds to advection, the flow of conserved quantities (Pb, Pb~, and pbE) across the mesh. These will be 
termed the transport terms. 

The first term on the right hand side of Eqs. (2) and (3) comes from our choice of comoving coordinates 
(a similar term also appears in Eq. (8),  the velocity relation for the dark matter particles). It does not appear 
in the mass conservation Eq. (1) because of the comoving density definition. We note that these expansion 
terms could be eliminated entirely by the proper choice of variables (including time), although we have not 
done so here, as they do not constitute a major source of error. 
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Fig. 1. Overview of KRONOS operations. 

The remainder of the terms (due to pressure and gravity) are denoted as source terms. They drive instabilities 
and discontinuities in the flow. We make these distinctions because each of the three groups of terms have 
different numerical behaviour and are therefore treated differently. The source and transport steps will be solved 
in a self-consistent fashion by the PPM scheme while the expansion terms, which are spatially localized, are 
split off and solved in a separate step (as would be radiative cooling and heating, if present). This operator 
splitting has the effect of introducing a constraint on the time step by requiring that the coefficient i~/a be 
small. Specifically, we insist that the expansion factor increase slowly, 

m a  
- -  <_ Ca, (9) 

a 

where b a  is the change in the expansion factor a per time step and Ca is a safety factor, which must be less 
than one for stability. To insure comparable accuracy with the rest of the scheme, we use Ca = 0.01. In practice, 
the time step constraint implied by this restriction is only important near the beginning of a simulation when 
the gas and dark matter are cold and fluctuations are small. At later times, as we shall see, other constraints 
place tighter limits on the time step. 

The remainder of  the terms (transport and source) in the fluid equations involve derivatives. Because we are 
interested in phenomena with no special geometry, we will restrict discussion to Cartesian coordinates. Once 
again we use the concept of operator splitting, but now apply it spatially. Here also, we split off the transport 
terms, writing the one-dimensional Lagrangean versions of Eqs. ( 1 ) - ( 3 )  as: 

c~ 1 1 aVb 
cgt Pb apb tgx ' (10) 
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OUb 1 Op I cgdp 
- ( l l )  

3t apb Ox a cgx ' 

OE 1 O(pub) Ub Oq~ 
- ( 1 2 )  

cgt aph c~x a Ox" 

Now, x and c refer to the one-dimensional comoving position and peculiar velocity of the baryonic gas. These 
equations are now in a form that can be solved by the PPM scheme. 

2.2. The p iecewise  parabol ic  me thod  in cosmology  

We now restrict ourselves to the solution of Eqs. (10) - (12) ,  plus transport, in one dimension. This is 
accomplished by using a Lagrange plus remap scheme. There are two phases: first, solve the equations in 
Lagrangean form, and then remap the resulting distribution to Eulerian cells. This is described in detail in 
[5], but we will briefly outline the procedure in order to place the required changes in context. A schematic 
overview of the process is shown in Fig. 2. Additions required for a successful cosmological adaptation of the 
scheme are also shown and will be described in Sections 2.3-2.5. 

The Lagrangean difference equations are: 

a"pTAx, 
(13) n + t  = 

Pi anAxn.i + At(-~j+l/2 -- Vj-1/2) ' 

U t!+lJ Lj'n A t  = + - -~mj(Pj - l /Z  - -fij+J/z) + At(gj+t/2)," (14)  

A t  ,n+l] g~+l/2. 

We have used subscripts to indicate zone-centered ( j )  and face-centered ( j  + 1/2) quantities, while super- 
scripts refer to position in time. The Lagrangean nature insures that the mass of an element A m j  = a'p.TAx: ] 
does not change during the time step. Although they have been discretized in space, the accuracy of the update 
depends on how well we can compute the fluxes into and out of the cell during At. This in turn depends on 
our ability to compute the time-averaged (over At) values of p and u at the cell interfaces, denoted here by 
-fi.j±l/2 and U.i±I/2. We now describe the steps required to compute these quantities. Note that these difference 
equations (and the remap step that follows) are conservative. 

We first construct monotonic piecewise parabolic (third order) interpolations in one dimension for each of 
p, v and p. The pressure is determined from Eq. (4),  the equation of state. We have dropped the subscript b 
in this and the following two sections because we will be referring solely to baryonic quantities. 

The interpolation formula for some quantity q (one of p, u and p) is given by 

q ( m )  = qL,j q- x( Aqj + q6,j( 1 -- X) ) ,  

m -- m j - l / 2  
x ~_ , mj_ l /2  < m < m j + v 2 .  (16) 

A m j  

This is Eq. (1.4) of [5]. The mass coordinate m is the natural variable for interpolating in the Lagrangean 
step. The zones edges in the mass coordinates a r e  mj-l/2 and mj+l/2 for the left and right edges, respectively. 
The quantities qL.j, Aqj, and q6,j c a n  be viewed simply as interpolation constants; however, they also have 
more intuitive meanings. For example, qL,j is the value of q at the left edge of zone j, while Aqj  and q6,j are 
analogous to the slope and first order correction to the slope of q (see [5] for a complete discussion): 

Aqj  ~ qn,j - qL,j, q6,j = 6 [qj - 1/2 (qL,j -k- qR, j )] .  (17) 
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Fig. 2. Steps in a one-dimensional sweep to solve the fluid equations. Additions to the basic PPM scheme are labeled with arrows. 

We have reduced the problem to finding qL,j and qR,j. While this is simple in principle, it is complicated 
somewhat by the requirement that these values be of  sufficient accuracy and that the resulting distribution be 
monotonic. That is, no new maxima or minima are introduced. The resulting formula are straightforward but 
complicated and are not reproduced here (but see Eqs. (1.7) to (1.10) of  [5] ). 

Once we have the interpolation constants we compute the characteristic domain for each zone edge. This is 
simply the farthest a sound wave could travel in order to reach the interface by the end of  a time step. The 
characteristic domain encompasses all of  the information that can reach the zone edge during the current time 
step. 

Here is the crux of  the method: an average is taken over each of  these domains to create, in effect, two 
constant states separated by a discontinuity. The advantage is that the solution to such a problem (called a 
Riemann problem) is well-known, self-similar and relatively easy to determine (although much work has gone 
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into approximations that are quick to compute). Its application insures that the Rankine-Hugoniot conditions are 
satisfied across a shock, thus avoiding the necessity of employing explicit artificial viscosity. It is implemented 
so that in the limit of smooth flow and no discontinuities, we solve the characteristic equations that produce 
time-centered quantities for p and v. 

To determine the effective left and right states, we average over the domain of dependence on the appropriate 
side of the cell interface. This is given by 

qi+,/2 = fi+l/2,c(AtC~ )' q Ll/2 = fJ+U2,R(AtC~+I )' (~8) 

where q~ ( q - )  refers to the left (right) characteristic. Notice that we have approximated the characteristic 
sound speed as a constant within a cell, Here we use the Lagrangean sound speed C 2 = ypp rather than the 
Eulerian speed c 2 = y p / p  because the interpolation is over mass. The functions f are just integrals over the 
parabolic interpolation formula: 

nI)l 1/2 m)4 1/2 q-Y 

f i+ l/2 L ( Y )  = l a(m)dm, f j + I / 2 , R ( Y )  = _l f a(m)dm. (19) 
3' Y 

mj ~ t /2 --Y mj ~ m/2 

With these effective states, an approximation to the Riemann problem is found with an iterative approach 
(see [ 16 ] ), producing estimates for Pj i l /2  and ~j+ 1/2 that are third order accurate in space and second order 
accurate in time. 

After solving the difference Eqs. (13) - (15)  for pn+l, u~+l, and E "+l, we must remap these Lagrangean 
distributions to the original cells. The procedure is straightforward: construct piecewise parabolic interpolations 
(but now using E instead of p and including the transverse velocities Vy and v z), and integrate over the distance 
each cell interface has moved. This is determined from -~j+J/2. 

2.3. Adding gravity to the PPM scheme 

We need the time-centered gravitational acceleration g~+l/2 for Eq. (15), computed here by finite differencing 
the potential ~b ~+t/2. If FFT's are used, a direct determination of the acceleration is possible (see [4] ), but 
would require four transforms instead of two. This time-centered quantity should come from the advanced 
density distribution (p,+V2); however, that would render the scheme implicit. Therefore, we use a linear 
extrapolation from the previous two time steps: 

( Atn ) - q b n - '  Atn (20) 
~b "~1/2 = dp" 1 + 2Atn_------- T 2Atn_l.  

Since the potential varies slowly, this is sufficiently accurate as long as the time step does not increase suddenly 
(a condition which we enforce, see below). 

The acceleration required in Eq. (14) is actually the acceleration felt by the entire zone and not just at the 
zone center. Therefore, we find the mass weighted average acceleration over the zone by expanding the density 
and acceleration distributions and retaining all terms up to second order in Ax: 

,~..~+1/2 _ 1 [ t h n + l / 2  t / n + l / 2  l ( , ,An+l /2  __ 2~b~+,/2 n+,/2 (21) 

_ t _ + ) 2an+l/2~X) -~  dj ] " 

The success of the interpolation schemes in this method depends on the preservation of monotonicity. This 
must be done for the density slope ~dj, but not for the potential because it is only slowly varying, 

6d) = min( Idj+, - dj_, l, 21d] - d~_, l, 21dy - dy+, I) sign(dj+, - dj_, ) 
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if ( d j + l - d j ) ( d j - d j _ j )  < 0 ,  

--- 0 otherwise. 

(22) 

This guarantees that the slope will not cause any interpolated value to exceed the density in the left or right 
zone, or, if the density at j is a local maxima or minima, it sets the slope to zero. 

The other change required to adapt PPM for a body force is described in [5] and involves modifying the 
Riemann solver to account for gravity with the inclusion of a linear corrective term (not to be confused with 
the post hoc Riemann correction described in Section 2.5). This is relatively straightforward, although we note 
that a factor of one-half is missing from their Eq. (2.9): the factor At should read At/2. 

2.4. The dual energy formulation for high Mach flows 

The system described so far works well for gravitating systems with reasonable Mach numbers ( <  100) as 
long as the structures are well resolved. This section and the next detail changes that are required to correctly 
account for situations in which one or both of these requirements are not met. 

Large, hypersonic bulk flows appear to be very common in cosmological simulations and they present a 
problem because of the high ratio of kinetic energy Ek to gas internal energy e, which can reach as high as 108. 
Inverted, we see that the internal energy consists of an extremely small portion of the total energy. The pressure 
then, proportional to E - E k ,  is the small difference between two large numbers: a disastrous numerical situation. 
This is not as large a problem as it may at first appear because it only occurs when the pressure is negligibly 
small. Therefore, even if we suffer large errors in the pressure distribution in these regions, the dynamics and 
total energy budget of the flow will remain unaffected. Nevertheless, if the temperature distribution is required 
for other reasons (e.g. radiative processes), a remedy is required. 

To overcome this, we also solve the internal energy equation: 

__ 1~ .  3 ( y -  1)a P----V. Oe + Ve - e - 5 (23) 
Ot a a ap 

in comoving co-ordinates. The structure is similar to the total energy equation; the second term on the left hand 
side represents transport, while the first term on the right is due to expansion of the coordinate system. These 
are treated as before. It is differenced (again, in Lagrangean form without the expansion term) as 

en+l n A t  n+l/2~- 
j = ej + -~mjP j tuj-J/2 - -vj+l/2). (24) 

The time-centering of the pressure in this equation is essential to avoid the accumulation of entropy errors, but 

we would still like to retain the explicit nature of algorithm. Therefore, we adopt p~+1/2 = (-fij-1/2 +Pj÷I /2 ) /2 .  
It is necessary, however, to conserve the total energy so that the conversion of kinetic to thermal energy is 

performed properly. We must therefore, combine the two formulations without allowing the separately advected 
internal energy e to play a role in the gas dynamics. This is done by carrying both terms through the simulation 
and using the total energy E for hydrodynamic routines and the internal energy e when the temperature profile 
is required. One way to view this procedure is to treat e as enhanced precision (extra digits) for E that 
automatically 'floats' to where it is needed. We only require that they be kept synchronized when the two levels 
of precision overlap. 

When the pressure is required solely for dynamic purposes, the selection criterion operates on a cell by cell 
basis using 

f p ( y -  1 ) ( E - f l / 2 ) ,  ( E - ~ / 2 ) / E >  rh, 
P = I.P(Y 1)e, ( E -  v-'z/2)/E< rll. 

(25) 
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It should be stressed that as long as the parameter "ql is small enough the dual energy method will have 
no dynamical effect. We use r/l = 10 -3 which is consistent with the truncation error of the scheme. We are 
now free to select the method by which the internal energy field variable e is updated so that it will not 
become contaminated with errors advected by the total energy formulation but still give the correct distribution 
in shocked regions. Since we are concerned with the advection of errors, the selection criterion must look at 
each cell's local neighbourhood. In one dimension, this is done with 

( E -  v-a/2) p ( E -  v- 'Z/2)/max(pj_iEj_l ,pjEj,pj+lEj+l) > r12, 
e = ' (26) 

e, p ( E  - v"2/2) / max(pj_l  Ej-1, pjEj,  Pj+l Ej+l) < rl2. 

Thus, r/2 determines when the synchronization (of e with E) occurs. Too high a value may mask relatively weak 
shocks, while spurious heating (via contamination) may occur if it is set too low. After some experimentation, 
we have chosen 772 = 0 ,  1, a somewhat conservative value. 

We note that others have independently developed a similar but distinct scheme for dealing with this problem, 
which is endemic to methods adopting the total energy equation. In Ref. [ 12] the two variables adopted are 
total energy and entropy (rather than total energy and thermal energy), with an analogous scheme for choosing 
which variable to employ. 

2.5. The correction to the Riemannn solver 

Body forces, such as gravity, are included in the Riemannn solver as a linear term [5]. This is sufficient 
as long as the structures being computed are resolved and we can clearly distinguish between gravity-induced 
pressure gradients and shock waves. Unfortunately, this is not always possible in gravitational clustering. The 
problem manifests itself in the early stages of an object's collapse, when it is contained within two zones (the 
resolution element for most shock capturing codes). Here, the scheme underestimates the time averaged pressure 
(Pj+t/e) between the zones. This is a consequence both of the fact that the body force is only included to first 
order in the Riemann solver and the monotonicity constraints which tend to clip local peaks in the density and 
pressure distributions. We therefore apply a correction of the form 

Pi+l/2 = max [Pj+I/2, (vj - vj+l)max (dj ,dj+l)max (O, vj - Vj+l)] . (27) 

This largely ad hoc estimate converts the energy of motion between the two zones into thermal energy if they 
are colliding. This thermal energy is then used as a new estimate for the time-averaged pressure between zones 
only if it is larger than the estimate from solving the Riemann problem. To prevent its application outside of 
underresolved, collapsing regions, we also demand that a strong overdensity be present: 

di/d./_j > 2 and dj+l/dj+2 > 2. 28) 

The factor of two in this constraint comes from applying the method to underresolved distributions with known 
solutions, such as the spherical collapse [18] and the Zel'dovich pancake [22,23] as well as self-convergence 
tests. 

This correction must also be applied to p~+l/2, the pressure used in the internal energy update. Here we are 
dealing with zone centers, so the correction becomes 

p7 +1/2 = max [p;+l/2,dy ( v j - I / 2 -  3 j+1/2)max ( 0 , 3 j - i / 2  -- Vj+l/2)] , (29)  

again with the requirement of a (zone-centered) overdensity of factor two. 

To maintain consistency with the dual energy formulation, we reset py+l/2 to ( y -  1 )ejpj if this cell used 
the total energy (26) to obtain its pressure. 
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2.6. The Layzer-lrvine cosmic energy equation 

An important test of any numerical method is energy conservation. Following [ 13], we write the comoving 
equation of total (gravitational plus fluid) energy conservation (c.f. [ 14,15] ) as 

d 
~-~(K + U + W) + /Z (2K ÷ 3P + W) = 0. (30) 

a 

The symbols K, U, and W refer to the average comoving kinetic, internal and potential energies, respectively 
and we have defined P to be the average com oving pressure. 

The expression can be integrated over time and discretized to read 

n 

a"( K" + W n + U n) + Z [  K m-l~2 + ( 3 7 -  4 ) u m - l / 2 ] A a  m-U2 = a°( K ° + W 0 + U°).  (31) 

m=l 

In the limit of no expansion (a = 1 and/z = 0), we recover the usual conservation of total energy. We integrate 
this equation along with the dynamical equations to monitor energy conservation. 

2.7. Code structure and overview. 

We now return to the organizational structure of the code (Fig. 1). The first step must be to create or load 
the initial conditions. We use the Zei'dovich approximation to set up the particle distribution, as described in 
[6]. For a set of particles initially placed at grid centers, this produces displacement vectors and velocities for 
each of the particles. The baryonic density and velocity distribution is found as in [ 11 ]. 

Next we enter the main loop, calculating the potential using fast Fourier transform techniques [4], and then 
checking energy conservation for adiabatic simulations (Section 2.6). The expansion terms are updated and then 
the PPM scheme is used to solve for the hydrodynamic variables. Finally, the particle positions and velocities 
are updated with a time centered second order method. 

The time step is chosen from the minimum of the expansion time step (9), the Courant condition and the 
requirement that a particle move no more than half a cell's length in a single time step. 

The Courant condition is given by 

At < min {[C0a (t) Ax] / [Cs + max (]vx], IVy I, [Vz [)] },  (32) 

where Cs is the local sound speed, vx, Vy, Vz are the local fluid velocities and Co is the Courant number, 
typically Co ~ 0.5. The minimum is over all cells. We also demand that the time step increase by no more than 
25% from its previous value and add the requirement that the universe expand by no more than 2% in linear 
dimension within one time step. 

The code uses dimensionless units. Specifically, length is in units of the box width, density is in units of the 
mean comoving density 

3~H~ (! + z) 3, 
p0 - 8~r---~ 

and time is normalized by 1 / ~ ,  where H0 is the Hubble constant at the current epoch. 

3. Cosmological tests 

The PPM method has been subjected to a number of pure hydrodynamic tests many of which are described 
in detail by [ 17]. It performs very well on tests involving strong shocks, common in astrophysical flows. 
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Fig. 3. The density distribution of the planar one-dimensional pressureless collapse at 0.927 free fall times. The analytic solution is denoted 
by a solid line. 

Similarly part icle-mesh codes have been extensively benchmarked [4,6].  We will therefore concentrate on tests 
that model physical situations which are expected to arise in cosmological  simulations. 

3.1. One-dimensional  pressureless collapse 

As a first test of  the gravity solver and advection routines we model the two sided one-dimensional collapse 
of  a homogeneous plane parallel cloud in Cartesian coordinates. This is similar to the gravitational collapse of  
a sphere in spherical coordinates [ 19] and an analytic solution describes the collapse of  every mass layer, 

( x / x o )  = 1 - 27rGpo t2, (P /Po)  = (1 - 27rGpot2) - I .  (33) 

Here, the time for any mass layer to reach the origin (the free fall t ime) is tiT = V /1 / (27rGpo) .  The initial 
density at t = 0 is P0 and the fluid starts at rest. To make the run, we use units such that p0 = 1 and G = 1, 
making tfy = 0.399. Isolated boundary conditions are used as described in [21 ]. In Fig. 3, we show the density 
distribution at t = 0.37, considerably advanced in the evolution. For a numerical example of  this problem in 
spherical coordinates,  see [20] .  Note that the universal expansion terms are not used in either this problem or 
the next (i.e. a = 1). 

3.2. The Jeans instability 

As a natural extension of  the previous problem, we add pressure forces. This introduces a length scale but 
also produces a non-linear system of  equations with no general analytic solution. However, by linearizing the 
equations around the homogeneous solution (pressure p0 and density p0) we obtain a solution with two cases: 
a travelling wave or a growing perturbation. The condition that differentiates these two situations is the familiar 
Jeans criterion, which we write as 

G po 2 ,~ 2 
p~ = - - ,  (34)  

yvr 
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where A is the wavelength of  the perturbation and Pc is the critical pressure. If  the ambient pressure is above 
it, the wave oscillates and if it is below, the wave grows. 

In order to determine the code's ability to discriminate between these two cases, we impose a perturbation 
wavelength of  64 zones and vary the pressure in small increments around the critical pressure. We find that the 
value given in Eq. (34) is reproduced to within lXp/pc = 0.01. 

3.3. Adabatic expansion 

In order to test the time-integration accuracy of  the expansion terms, we turn universal expansion on and 
adopt a completely homogeneous universe with initial temperature T/= 200 K and vi = 100 km/s  at an initial 
redshift of  zi = 20. The expansion terms in Eqs. ( 1 ) - ( 3 )  operate like drag terms, so that in the absence of  a 
source, the velocity decreases as v = vi a-1 and the temperature as T = T/a -2. Using Ca = 0.01, the computed 
temperature at z = 0 was Tf = 0.2255 K, 0.57 % below the analytic result of  0.2268 K. The final computed 
velocity was uf  = 4.749 km/s,  compared to 4.762 km/s,  a 0.27 % discrepancy. 

3.4. The linear phase o f  the one-dimensional Zel'dovich pancake 

This test (described in Sections 3.4 and 3.5) is particularly pertinent to cosmological studies not only because 
it encompasses all of  the physics (hydrodynamics, expansion and self-gravity), but also because it represents 
an idealized, isolated caustic formation. One can think of  the problem as a single-mode analysis of  the full 
three-dimensional simulation. The initial conditions are relatively simple; we simply place a linear, sinusoidal 
perturbation in a one-dimensional box and follow its evolution. A solution to the equations (which can also be 
used to set up the initial state) for a fiat cosmology is [22,23] 

[ 1' l + Zc cos (kxl)  , 
p ( x t )  = po 1 l + z 

1 +Zc sin(kxt) 
v(x t )  = - H 0 ( I  + z)) /2  ------if---, (35) 

Here, zc is a free parameter and is the redshift at which the Zel'dovich results 'pancake',  or form caustics. H0 
is the current value of  the Hubble constant, often parameterized as H0 = 100h Mpc /km/s ,  and k = 2~'/A where 
A is the perturbation wavelength. We note that this solution is exact in one dimension up until the point of  
caustic formation. However, these expressions are in terms of  Lagrangean positions xl, so we need to convert 
the Eulerian coordinates of  the code (Xe) into Lagrangean coordinates: 

1 + Zc sin(kxt) 
- -  = x e .  ( 3 6 )  xl - 1 + zi k 

As a check of  the linear evolution, we set up a model from an initial redshift zi = 100 with the following 
parameters: 256 zones, Tinit = 102K, A = 64h - I  Mpc, h = 0.5 and zc = 1. Defining the Ll error norm as 

l~-~[p(Xt)--___Pnumerical[ ( 3 7 )  

( a p )  = ~ i=~ p0 ' 

for density and adopting a similar definitions for v, we make the run with N, the number of  grid points spanning 
the perturbation, ranging from 8 to 64. The errors should decrease as Ax -r where r is the convergence rate. 
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Fig. 4. Convergence rates and LI error norms for the density and velocity fields in the one dimension Zel'dovich pancake. 

Fig. 5. The velocity (top), temperature (middle) and density (bottom) for a one-dimensional Zel'dovich pancake at a redshift of z = 0. 
Velocity is in km/s, temperature in K, while the density is in units of the current background density required for a fiat universe. 

In Fig. 4, we plot both the error and the convergence rate, as found by computing the slope of  the logarithmic 
derivative of  the error with respective to N. We see that the velocity converges as r ~ 2 and the density a s  

r ~  1.5.  

3.5. The non-linear phase of the one-dimensional Zel'dovich pancake 

The non-linear phase of  evolution for the caustic is of  more practical interest in cosmology,  as well as being 
more difficult than the linear evolution. Fig. 5 shows the solution at z = 0 (using the same initial conditions as 
in Section 3.4) at a resolution of  256 zones,  demonstrating the strong shocks and large gradients involved. The 
shock is well  delineated and the temperature profile of  the very cold gas is still accurate (until it drops below 
1 K which we  have instituted as an artificial min imum) .  

We have also performed this test at a number of  different resolutions in order to gauge the method's ability 
to resolve the evolution with a small number of  zones. This characteristic is crucial because of  the range of  
wavelengths active in hierarchical cosmological  models.  The results (at z = 0)  using 8, 16 and 32 zones are 
shown in Fig. 6. Solid lines represent the solution computed at a much higher resolution (1024  zones)  and 
then degraded to the appropriate scale. We do not show examples with more than 32 zones because they exhibit 
almost no difference from the converged solution (once  it is binned to the lower resolution).  

Clearly, even with eight zones the main features are right: a sharp central density peak causes a shock to 
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Fig. 6. The velocity (top), temperature (middle) and density (bottom) for a one-dimensional Zel'dovich pancake at a redshift of z = 0. 
Open circles with dotted lines depict the solution computed with 8,16 or 24 zones (left, center or right panels), while the solid lines 
represent the solution computed with 1024 zones and degraded to the appropriate number of zones. Units are as in the previous figure. 

form and move outward from the central plane. The density distribution in each case is very close to its correct 
shape, although the zones next to the peak are slightly elevated (this is due to the monotonicity of  the scheme 
and not to an explicit diffusion). The pressure and temperature in the central peak are somewhat below the 
high resolution results, especially for the eight zone test. This is unavoidable as the artificially widened peak 
(a minimum of two zones for the symmetric case considered here) puts a limit on how much potential energy 
can by converted to kinetic and thermal energy (see Fig. 8). There is some low temperature jitter (caused by 
the dual energy formulation), but the most important characteristics are the sharp shocks and low diffusion, 
even at poor resolution. 

In order to gauge the self-convergence rate in the non-linear regime, we must redefine the error norm because 
the strong shock causes changes in some quantities by a factor of  108. We adopt, for a quantity q (one of  T, u 
or p) ,  

1 ~N Iqi -- q1024,il ( Aq) 
./ZT' ~ max-~[q,I, [~-~-~024,il) ' 

(38) 

where q1024,i is computed by linear interpolating between points in of  a high resolution solution computed with 
1024 cells. The effect of  using the maximum of the two quantities in the denominator is to force each term in 
the error to be between zero and one. Fig. 7 shows the error for a number of  different resolutions. Although 
the sharp shock causes some noise, the convergence rate appears to be r ,-~ 1. The presence of  a discontinuity 
prevents a convergence rate better than one. 

In Fig. 8, we show the dependence of  the various energy terms on resolution, as well as the fractional energy 
gain or loss (defined as the ratio of  the difference between the right and left hand sides of  Eq. (31) to a n W " ) .  
The drop in thermal energy seen below 32 zones is due to the inability of  the small mesh to represent such a 
narrow central peak. This makes the magnitude of  the potential energy too small. The thermal energy mirrors 
this, but the kinetic energy remains constant and does not decline as it should. Once again, this is due to a 
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lack of  resolution. Immediately after the peak is formed, it is two zones wide (due to the symmetry of  the 
initial conditions),  while the true distribution is much narrower. Insufficient thermal energy has been produced 
to support this artificially thick structure and it should collapse further but is prevented by the coarseness of  
the grid. One can think of  this as a fictitious 'grid' force that is not represented in the energy equation and so 
shows up as a violation of  energy conservation. It applies to highly under-sampled structures and represents 
only a small amount of  energy compared to larger and better resolved wavelengths. We also point out that the 
problem is not specifically related to the scheme chosen and should be present in any grid based method that 
produces such narrow density distributions. 
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Fig. 9. The velocity (top), temperature (middle) and density (bottom) for a double one-dimensional Zel'dovich pancake at a redshifl of 
z = 0. Units are as in the previous figures. 

Fig. 10. The velocity (top), temperature (middle) and density (bottom) for a double one-dimensional Zel'dovich pancake at a redshift 
of z = 0. Open circles with dotted lines depict the solution computed with 64 zones, while the solid lines with filled circles represent the 
solution computed with 1024 cells and degraded to 64 zones. Units are as in the previous figure. 

3.6. The double pancake with a strong and weak shock 

In order to subject the dual energy formulation to a stringent test we have superimposed a smaller perturbation 
with one fourth of  the wavelength onto the pancake described above. Using the same formulation as in the 
previous problem, we adopt zc2 = 0.45 and h2 = 16h - l  Mpc. Note that zc no longer refers to the redshift of  
peak formation (since the two perturbations interact) but is related to the amplitude of  the imposed sinusoid. 
In Fig. 9, we show a high resolution computation at z = 0, by which time the two central peaks have nearly 
combined. The side peaks are present but at a much smaller amplitude because they are in the low density 
region created by the main collapse. The ratio of  kinetic to thermal energy in the two smaller peaks is about 
103 , illustrating an occasion when the dual energy formalism is required. 

Fig. 10 shows the results computed with 64 grid points and contrasted with the 1024 zone solution degraded 
to 64 zones. The strong central shocks on either side of  high density plateau are well realized and near their 
correct locations. The smaller peaks have been stretched by the velocity field of  the stronger, inner fluctuations 
making the profiles wider than in the high resolution run. The ,shocks are also much weaker, having been 
modulated by e, the internal energy formulation. Notice that while this produces wider, less clearly defined 
shocks, they are still reasonably accurate. The main features of  the flow are present even though the thermal 
energy in the smaller shocks is one tenth of  one percent of  their energy of  bulk motion and each wavelength 
is resolved by less than sixteen zones. These last two conditions make this a difficult test for any cosmological 
code. 
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3.7. Two-dimensional self-convergence tests 
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As a final test, we compute a two-dimensional cold dark matter universe in order to test the self-convergence 
in a more realistic, multi-dimensional test (the parameters are identical to those in the next section, except, 
of course, for being two-dimensional). Performing these tests in only two dimensions increases the dynamical 
range that can be obtained with only a modest expenditure of computational resources. We run the simulations 
at a variety of resolutions in order to investigate the self-convergence properties of the code. In order to do 
this, however, we must insure that the physical problem we are solving is the same at each resolution. Since 
the initial conditions contain a spectrum of length scales, we must introduce an artificial cutoff in the power 
spectrum of initial perturbations. This is done such that the shortest wavelength used for the initial conditions 
is the the Nyquist wavelength of the smallest box to be examined, here 64 zones on a side. 

The results at the end of the simulation (z = 0) for 642, 1282 and 2562 grid points are shown in Fig. 11. 
Since the shortest perturbations are just two zones in the 642 box we do not expect such short wavelengths to 
be accurately evolved. Nonetheless, the correspondence between recognizable features in the three simulations 
is gratifying. It is clear from a visual inspection that the structures created are quite robust, despite the fact that 
they are often intrinsically much thinner than the grid can handle. Larger simulations have been computed, up 
to 10242 , and no new features are observed, although the caustics continue to be thinner at higher resolution. 

In order to be more quantitative, we have degraded the 10242 zone solution by averaging the density (and 
density weighted temperature) of all the high resolution cells that lie within a lower resolution zone. This gives 
a one-to-one correspondence between solutions computed with different resolutions. Scatter plots are presented 
for the 642 solution in Fig. 12 and 2562 in Fig. 13. Our earlier statements are confirmed. Although the scatter 
is fairly large in the first figure, there is correspondence over four orders of magnitude in temperature and two 
orders in density. The second plot displays even better agreement between the lower and high resolution runs. 

3.8. Comparison with other codes 

We have also, with others, carried out a comparison of this method with other modern cosmological codes, 
both Eulerian and Lagrangean. In order to examine a realistic model with the effects of dark matter, we 
computed the evolution of a flat, pure baryon universe using initial conditions from the cold dark matter 
(CDM) scenario. Although this is not a viable model, it does present a clearly defined test problem that does 
not depend on the N-body solver. The method for producing initial conditions has been described elsewhere 
[24,11,6] and can be parameterized in terms of /2 ,  the ratio of the average density to that required to close 
the universe and 0-8, the amplitude of mass fluctuations in a sphere of radius 8 h - I  Mpc at z = 0. We choose 
the canonical values ~O = l, 0-8 = 1, h = 0.5 and used a physical box of length 64 h - l  Mpc. Four runs were 
performed, using grids of 323, 643, 1283 and 2563 with the same initial conditions smoothed to the Nyquist 
wavelength of the 643 cube. The simulations were run from Zinit : 20 to Z ---- 0. 

The simulations are analyzed in detail in [25] and we will not repeat the analysis here, except to comment 
that the results only serve to strengthen our conclusion that this scheme is robust and accurate. 

4. Conclusions 

We have described the changes necessary for applying the third order accurate, shock capturing hydrodynamics 
scheme PPM to cosmological systems. The range of scales makes this a very difficult problem and has forced the 
adoption of an unusual method for dealing with the presence of weak shocks in supersonic flows. Although this 
method is not particularly elegant it does seem to produce the correct results. The correction to the Riemannn 
solver is also somewhat ad hoc and work is underway to incorporate self-gravity in a more self-consistent 
fashion. 
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Fig. 11. Greyscale plots of the logarithm of density (top three panels) and temperature (bottom three panels) for a two-dimensional CDM 
simulation computed with the same initial conditions at three different resolutions: 64 x 64 (left panels), 128 x 128 (central panels) and 
256 x 256 zones (right panels). Temperature is in degrees Kelvin, density in units of the present density required to close the universe. 

We have also presented the results of  a series of  tests selected for their relevance to cosmological  studies. 
The guiding phi losophy in presenting this test suite is not only to show that the correct results are produced 
with sufficient resolution, but also to demonstrate that the solutions under condit ions of  low resolution approach 
those that are as good as the resolution allows. Since simulations are often run that depend on the accurate 
evolution of  small wavelengths, this last point is important. We conclude that a higher order, shock capturing 
scheme such as PPM is essential for cosmological  work and also that the modifications described here produce 
a robust, high resolution code. 

The code has been written in FORTRAN 77 and runs at 1.3 x 104 zone-cycles per second on one processor 
of  a Convex 3880 (1.7 x 104 zone-cycles per second without the N-body solver and Poisson solver) .  It has 
also been converted to CM FORTRAN, a data parallel language similar to FORTRAN 90 that is used on the 
massively parallel Connection Machine 5. It runs at 1 × 106 zone-cycles per second on 512 nodes (2 x 106 
zone-cycles per  second without the N-body solver and 4 x 106 without the Poisson solver).  
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Fig. 12. Scatter plots of temperature (top) and density (bottom) for a two-dimensional CDM simulation computed with 64 x 64 zones 
compared on a cell-by-cell basis against a simulation computed with 1024 x 1024 cells and degraded to 64 x 64. Temperature is in degrees 
Kelvin, density in units of the present density required to close the universe. 

Fig. 13. Similar plots as in the previous figure, except for a simulation computed with 256 × 256 zones. 
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