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1. HII regions and Ionization Fronts

In star forming regions there are hot stars that have effective temperatures suffi-
ciently high that they produce photons that are shorter wavelength than Lyα and
so can ionized atomic hydrogen. The gas near these hot stars can then be ionized.
HII regions consist of gas in equilibrium between photoionization and the inverse
process which is known as recombination. Recombination is when ions capture free
electrons. HII region is an astronomical term for singly ionized hydrogen. HI would
be neutral atomic hydrogen.

First let us consider recombination. The recombination rate (number of recombi-
nations per unit volume per unit time)

(1) r = npne〈σv〉 = npneα(T )

where σ is a cross section and we have averaged the cross section over different
velocities. Here np is the number density of free protons and ne is the number
density of free electrons. The number of free protons is approximately equal to the
number of free electrons for a gas predominantly of hydrogen to be neutral; np ∼ ne.
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Let x be the number of free electrons divided by the total number of hydrogen atoms
(both ionized and neutral); x = ne/nH .

(2) r = α(T )npne = α(T )n2
e = α(T )x2n2

H

1.1. The Strömgren Sphere. Suppose we assume that inside some radius rstrom
the gas is entirely ionized. In the center is an ionization source that emits ionizing
photons at a rate Q∗ (photons per second). We could estimate Q for a star

(3) Q∗ =

∫ ∞
hν=13.6 eV

Lν
hν
dν

Here 13.6 eV is the minimum energy needed to ionized neutral hydrogen. For an
O5V star Q∗ ∼ 3×1049 s−1. We assume that all ionizing photons are absorbed so the
ionization rate integrated over the sphere is Q∗. The recombination rate integrated
over the sphere

(4)

∫
rdV =

4π

3
r3
stromα(T )x2n2

H

If we balance the recombination rate against the ionization rate and assume that the
medium is totally ionized (x = 1) then we find

(5) rstrom =

(
3Q∗

4παn2
H

) 1
3

In reality we must not only balance ionization inside the HII region but also heating
and cooling. The absorption of UV photons leads to heating. Recombination leads
to emission of UV, optical and infrared photons and so leads to cooling. The balance
between the two processes is achieved at an equilibrium temperature that is typically
∼ 104K. At this temperature α ∼ 2.6 × 10−13 cm3 s−1. The radius of a Stromgren
sphere at a density of nH ∼ 104 cm−3 is a fraction of a pc. This is much smaller than
the mean free path due to Thompson scattering; (σT = 6.8×10−25cm2). The optical
and infrared photons emitted during recombination tend to escape easily (unless the
system is young and very optically thick). An ion that has recently recombined will
not necessarily be in its ground state. It will decay by emission lines (e.g., Balmer
series transitions) eventually reaching the ground state. Its last transition is likely to
be a Lyα photon. The lower energy emission lines will escape while the Lyα photons
will be absorbed and reemitted. Consequently the energy of the ionizing photons
will be reemitted primarily in photons that can escape the ionized gas. A significant
fraction of the total energy absorbed is often emitted in Hα, for example, (about 1%
for HII regions seen in extragalactic optical surveys).
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1.2. Early Evolution. Consider the advance rate of the initial ionization front. The
number density of electrons can be described with the following continuity equation

(6)
∂ne
∂t

+∇ · (neu) = I − r

where I is the rate of ionizations per unit volume and r is the rate of recombinations
per unit volume. We can describe the ionization rate

(7) I = −∇ · J
where J is the flux of ionizing photons. Inside the front where the gas is nearly
completely ionized the recombination rate r = αn2

e as before. In the frame of the
ionization front we can integrate the previous equation. Remember the relation for a
conservation law the condition across a discontinuity. The jump condition becomes

(8) ne,2(s− v2) + J = 0

where s is the speed of the front, v2 is the velocity inside the front, ne,2 is the electron
number density inside the front and J the flux of ionizing photons at the location of
the front. The recombination rate drops out because it does not involve a derivative.
The above equation has no term with the number density of electrons outside the
front. This is because ne is zero outside where the gas is not ionized. At early states
we can assume that v2 is zero and ne,2 is the same as nH outside the front. We
assume that there is no ionizing flux outside the front. This lets us estimate the
speed that the front advances

(9) s ∼ J

nH

Early on when little of the ionizing flux is absorbed interior to the front this gives a
speed

(10) s ∼ Q∗
4πr2nH

We could have guessed at this speed just by considering how many atoms can be
ionized per second and assume that there are no recombinations inside the front.

1.3. Achieving Pressure equilibrium. Consider what happens immediately after
an O star begins to emit UV radiation. The photons are emitted and absorbed
sending out an ionization front that travels very quickly (of order a fraction of the
speed of light and so much faster than the sound speed). The gas does not have any
time to respond. The front expands until the recombinations balance the ionizations.
This happens when the ionization front is about the size of the Stromgren radius
estimated above using the ambient density. At this time recombinations balance
ionizations and the front stops expanding as all UV photons are absorbed. Inside
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rstrom the gas is entirely ionized, but it is also now much hotter than it was when
it was neutral. The balance between heating due to ionization and cooling due to
emission of recombination lines (and other processes) heats the gas inside rstrom to
about 104K. However the gas density inside is the same as it was outside. This means
that interior to rstrom the pressure is much higher than outside. On a longer timescale
the ionized region must expand until it is in pressure equilibrium with the ambient
medium. We can estimate the side of a new sphere that achieves both ionization and
pressure equilibrium by solving for a new density. The ration between the density
inside and outside the sphere is

(11) 2nH,inTin ≈ nH,outTout

where we can estimate Tout from that typical in a star formation region (100K or
so) and Tin ∼ 104K. The factor of 2 is because inside we assume the gas is totally
ionized and so has both electrons and protons. Insert this into equation (5)

(12) rs =

(
3Q∗

παn2
H,out

) 1
3 (

Tin
Tout

) 2
3

and we find a new radius.
How does the ionization front evolve between these two states? Between the two

states we have an advancing ionization front and outward directed velocities caused
by the pressure differential. The expanding bubble sweeps up ambient medium, so
during expansion the bubble is surrounded by a dense cool shell of material.

1.4. Jump conditions on an ionization front. It turns out that complete ion-
ization and temperature equilibrium at about 104K is a pretty good approximation
inside the ionization front. We can assume temperature equilibrium outside the
front in the ambient medium. The temperatures are set everywhere and we expect
the largest pressure jump at the boundary of the front. We can consider the jump
conditions at the ionization front itself.

ρ1u1 = ρ2u2(13)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2(14)

Following our previous conventions the 1 subscript refers to pre-shock gas and we
are working in the frame moving with the front. Here pre-shock means outside the
ionization front where the gas is neutral. Let

ρ1 = mpnH,1 ρ2 = mpnH,2(15)

p1 = nH,1kBT1 p2 = 2nH,2kBT2(16)

Note the factor of 2 in the pressure equation for the ionized gas inside the front. This
implies that the gas interior to the front is entirely ionized (one electron for every
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hydrogen). We define two speeds

(17) a2
1 = kBT1/mp a2

2 = 2kBT2/mp

with a1 much smaller than a2. Typically T2 will be about 104K. Our jump conditions
now look like

nH,1u1 = nH,2u2(18)

nH,1(a2
1 + u2

1) = nH,2(a2
2 + u2

2)(19)

Solving for the density and velocity ratios

(20)
nH,2
nH,1

=
u1

u2

=
1

2a2
2

[
(uRuD + u2

1)±
√

(u2
1 − u2

R)(u2
1 − u2

D)

]
with

uR ≡ a2 +
√
a2

2 − a2
1

uD ≡ a2 −
√
a2

2 − a2
1(21)

Here uR is for “rarefied’ and uD is for “dense.” The velocity uR is always larger than
uD. From equation (20) we see that physical solutions are found only if u1 > uR
(rarefied case) or u1 < uD (dense case) and you never get solutions in between. The
front is either called R-type or D-type. Fronts are further classified as “strong” or
weak depending upon the sign in the middle of equation (20). If the plus sign is used
then the density contrast is high and the front is considered “strong”. Conversely
if the negative sigh is used the density contrast is lower and the front is considered
“weak.”

When a2 is much larger than a1 then

(22) uR ∼ 2a2 uD ∼
a1

2

(
a1

a2

)
1.5. Evolution of ionization fronts. Early on in the evolution of an HII region,
the initial velocity is low and so we expect an R-type front. However the velocity
at the front boundary should increase with time. At some point the velocity will
become high enough that the front can be called R-critical. When the front is R-
critical there could be a discontinuity in the jump conditions because the ratio of
densities or velocity in the frame moving with the cannot smoothly go from the R-
type solutions to the D-type solutions. However, at this time the front itself will be
moving close to the sound speed in the neutral ambient medium and so an acoustic
shock can be generated by the expansion of the HII region. At this time the front
may develop additional structure. During the second phase a D-type ionization front
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may lie inside an external shock front. Neutral gas is swept up into a thin shell by
the expansion process.

To more carefully study ionization fronts, a number of additional factors can be
taken into account. The clumpy structure of the ISM could be considered. For
example, expansion could be faster in some directions than others. For old regions,
some fraction of the UV radiation can escape the region rather than be absorbed.
Young regions can be so optically thick that only radio emission can escape. For
these “compact” HII regions estimates of their lifetime apparently are difficult to
reconcile with estimates of their density and confinement by ambient material. The
presence of circumstellar disks or motion in the parent molecular cloud could also
affect the HII region evolution.

2. Cooling Flows

Early type galaxies and galaxy clusters can be luminous X-ray emitters. They are
full of diffuse hot T ∼ 106− 107K gas. It has been difficult to reconcile cooling rates
based on the X-ray emission with heating mechanisms and the quantity of detected
cooler gas. While clusters are often discussed in terms of ‘cooling flows’ it is possible
that there are sufficient sources of heating that they don’t efficiently cool. Many
models assume steady state solutions or mean properties or a single phase of the
interstellar medium. These assumptions may be insufficient to capture the thermal
dynamics.

2.1. Hydrostatic equilibrium and Beta models. Consider a galaxy cluster filled
with hot gas. We can consider a distribution in hydrostatic equilibrium.

(23)
∂p

∂r
= −ρ∂Φ

∂r

We adopt p ≈ 2nHkBT (assuming that the gas is primarily hydrogen) and ρ = nHm̄.
We can also relate the potential to the velocity of a particle in a circular orbit,
∂Φ
∂r

= v2c
r

. Neglecting temperature gradients this gives

(24)
2kBT

m̄

r

ρ

∂ρ

∂r
= −v2

c

Writing the derivative in a logarithmic form

(25)
∂ ln ρ

∂ ln r
= −v2

c

m̄

2kBT

If the circular velocity is nearly constant as a function of radius then the solution is

(26) ρ(r) = ρ0

(
r

r0

)−β
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where β ≡ v2
c/a

2 with a2 = 2kBT
m̄

. These are known as beta models (though I should
check the exponent and see if appropriately defined here). Typically a core radius is
included into the potential and the density profile turns over at this radius.

2.2. Cooling Rate. The cooling rate per unit volume

(27) q̇ = nenpΛ(T, Z) erg s−1 cm−3

For pure Brehmsstrahlung emission the cooling function

(28) Λrad = 2.1× 10−27
√
T erg cm−3

for T in Kelvin. The cooling time can be estimated as

(29) tcool ∼
e

q̇
∼ nekBT

n2
eΛrad

We have assumed np = ne and we have not bothered with factors of order 1 for the
internal energy. From the above estimate we find that the cooling time scales with
tcool ∝ T 1/2ρ−1. The problem arises from the estimates of the density based on the
beta models. The density increases with decreasing radius. The cooling timescale at
smaller radii can be short. By short we mean on galactic timescales or under a few
Gyrs.

Estimated cooling rates can be as high as a few hundred Ṁ/yr over regions of
radius of order 50 kpc and with X-ray luminosities as large as 1011−1012L�. Cooling
timescales in the center can be as short as order 1 Gyr. Note these luminosities are
as large as entire galaxy luminosities. To stop the cooling something able to dump
power of order a quasar is needed. This is why only something as energetic as kinetic
energy associated with black hole outflows (and from a massive black hole) is capable
of heating the medium sufficiently to stop a cooling flow.

2.3. Cooling flows. If there is gas cooling then one expects a slow radial inflow and
a slow temperature gradient where cooler gas is found in the inner regions.

We can go back to Euler’s equation and again assume a steady state solution but
do note assume a zero radial velocity. Euler’s equation can be written

(30)
∂

∂ ln r

(
u2

2

)
≈ −2kBT

m̄

∂

∂ ln r
(ln ρ+ lnT ) + v2

c

where I have kept both temperature and density gradient. Depending on the radial
temperature and density gradients the right hand side will not be zero and there
can be a radial velocity which we expect would be small compared to the circular
velocity.

Above we only consider a gas pressure but there could be other pressure terms.
Sometimes a turbulent velocity is incorporated into the pressure. Cosmic ray or
magnetic pressures may also contribute. Note here we have assumed that the gas
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is single phase and can be described by a bulk temperature, pressure and density
as a function of radius. However cooler clouds or filaments may condense out of
the hot gas and the medium could be multi-phase. There is no reason to expect
that cooling is a smooth or stable process, but it may be particularly unstable at
the critical temperature regime near the entropy floor. For example if small clouds
serve as nucleation cites then cooling may be particularly patchy. Alternatively, an
instability may be required and this may happen only in particular localized regions.

Some systems do show streamers in ionized gas, large amounts of molecular mate-
rial and have star formation, though galaxies with large amounts of cooler gas remain
a small subset of the wider class of cluster galaxies with luminous X-ray emission.

2.4. Role of conductivity. The hot outer regions might heat the inner regions via
heat conduction. The energy equation

(31) n
∂

∂t

(
5kBT

2m̄

)
= −n2Λ + κ∇2T

with thermal conductivity coefficient κ ∝ T 5/2 depending on temperature as it de-
pends on the velocities of particles and Coulomb interactions between them (the
form of the coefficient often used is known as the Spitzer conductivity coefficient).
It is difficult to imagine balancing the terms on the right hand side of the equation,
and simulations that include conductivity can catastrophically cool via development
of instabilities.

2.5. Entropy Floor. For an ideal gas the pressure

(32) p = nkBT = Kρ5/3

where the right hand side has γ = 5/3 for a monotonic adiabatic gas. Adiabatic
variations don’t change K so the quantity K can be used to quantify entropy and is
sometimes used in discussions of the “entropy floor” for the cluster medium

(33) K =
kBT

m̄ρ2/3
= kBTn

−2/3
e

The standard thermodynamic entropy per particle s = kB lnK3/2+ constant. A

similar quantity is kBTn
−2/3
e but one can convert between K and this quantity using

typical abundances.
It is desirable to normalize K. One choice for normalization is to use the mass

inside the radius r200. The radius r200 is that for which the mass interior to this radius
is 200 times the critical cosmological density, ρcr. The mass M200 is then the mass
interior to r200. The characteristic temperature T200 is that such that 2kBT200

m̄
= GM200

r200
.
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With a global baryon fraction fb = Ωb

ΩM
and the other virial quantities we can define

a characteristic entropy scale

(34) K200 =
kBT200

m̄(200fbρcr)2/3

Cooling reduces entropy. It is possible to solve for the critical entropy as a function
of temperature for which the gas radiates an energy equivalent to its thermal energy
in a time t0. This threshold entropy is close to the observed entropy floor renor-
malized value of the entropy for a timescale similar to the age of the universe. The
ratio depends on redshift presenting an additional problem as the threshold would
have been even higher in the past. One solution is to have a feedback mechanism
dependent on the entropy threshold (as proposed by Mark Voit and collaborators).
Entropy gradients tend to increase with increasing radius presenting a challenge for
feedback models as they must be constrained to put heat into the gas evenly and not
reverse the entropy gradient. One mechanisms is driving sound waves that dissipate
through conduction (Fabian et al. 2003).

Suppose some cooling does happen. While star formation is unlikely to provide
enough energy to significantly heat the cluster gas it can serve as a sink for cold gas.

2.6. Chandra observations. Chandra observations have revealed the following:
Chandra spectroscopy failed to find evidence for lowish temperature gas (emission

line emitting rather than dominated by Brehmstrahlung and of order upper 105 K).
This and previous results are sometimes described in terms of an “entropy” floor
(Peterson et al?).

Even quiescent elliptical galaxies can show complex X-ray structure. This structure
may be telling us about episodes of past radio galaxy activity. (e.g. NGC 4636?)

Galaxies like M87 exhibit cavities in the X-ray emitting gas that are filled by radio
lobes. Lots of detail recently found at low radio frequencies. These lobes are filled
with cosmic rays. They could be buoyant. They could be exciting sound waves into
the X-ray emitting gas which when damped by conduction heat the X-ray gas. The
kinetic energy estimated from these lobes (and associated PdV evacuation work) is
large enough to heat the X-ray gas sufficiently to stop cooling flows.

The energy estimated to push a cavity is of order pdV . The volume is estimated
from the area on the sky, the pressure in the ambient material from the X-ray emis-
sion. Pressure is of the same size as the internal energy density. If the volume filled
by lobes is similar to the volume of X-ray emitting gas then we would estimate that
pdV ∼ E the total energy. If radio lobes are continually displacing significant frac-
tions of the hot gas in a Gyr timescale then a heating rate can be similar to the
cooling rate.
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See Blanton’s review talk and the 2003 on line conference book. Some statements
are contradicted by Cen A’s southern lobe which does have a high Mach number and
hot shock edge.

Note this section is severely lacking in detail and citations. The PdV and entropy
floor work should be properly cited. M87 and Perseus A and Cen A and NGC 4636
studies could be cited (and other beautiful examples). I would like to add more
on role of possible role of cosmic rays and conduction and the turbulent α type of
models.

For more information:
http://www.astro.virginia.edu/coolflow/proc.php
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