Request Summary

Frank's A Study of Colliding Flows and Feedback in Star Formation

Date submitted: Apr 15, 2014

PRINT

CLOSE WINDOW

Summary index

- File Download
- Title / FOS
- PI Information
- Co-PI(s) Information
- Supporting Grant(s) Information
- Resource(s) Requested
- Abstract

File Download

It may take a few minutes to zip or tar your document for download.

Download all documents: ZIP TAR

Top of page

Title / FOS

TITLE

REQUEST NUMBER REQUEST TYPE

__....

PRIMARY FIELD OF SCIENCE

SECONDARY FIELD(S) OF

SCIENCE

Star Formation

A Study of Colliding Flows and Feedback in Star Formation

AST130036

Renewal

123 - Stellar Astronomy and Astrophysics

122 - Planetary Astronomy

KEYWORDS

Colliding Flows
Molecular Clouds

Feedback

Top of page

PI Information

FIRST NAME

Adam

MIDDLE NAME

LAST NAME Frank

ORGANIZATION University of Rochester

POSITION Faculty
DEGREE PhD

DEGREE FIELD Physics & Astronomy

DEPARTMENT Dept. of Physics & Astronomy

ADDRESS1 500 Wilson Boulevard

ADDRESS2

CITY Rochester

STATE NY

ZIP CODE 14627-0171
COUNTRY United States

EMAIL afrank@pas.rochester.edu

PHONE 585-275-1717

FAX

URL(S)

DN(S) CN=Adam Frank,O=National Center for Supercomputing

Applications, C=US/C=US/O=National Center for Supercomputing

Applications/CN=Adam FrankCN=Adam

Frank,OU=People,O=National Center for Supercomputing
Applications,C=US/C=US/O=National Center for Supercomput

Top of page

Co-PI(s) Information

FIRST NAME Shule

MIDDLE NAME

LAST NAME

ORGANIZATION University of Rochester
POSITION Graduate Student

DEGREE MS

DEGREE FIELD Physics & Astronomy
DEPARTMENT Physics and Astronomy
ADDRESS 500 Wilson Boulevard

ADDRESS (CONT.) Department of Physics and Astronomy, University of

CITY Rochester

STATE NY

ZIP CODE 14627-0171
COUNTRY United States

EMAIL shull200@gmail.com

PHONE 5852751717

FAX

URL(S)

DN(S) CN=Shule Li,O=National Center for Supercomputing Application

FIRST NAME Jonathan

MIDDLE NAME

LAST NAME Carroll-Nellenback

ORGANIZATION University of Rochester

POSITION University Research Staff (excluding postdoctorates)

DEGREE PhD

DEGREE FIELD Astrophysics

DEPARTMENT Physics and Astronomy **ADDRESS** 600 Wilson Boulevard

ADDRESS (CONT.)

CITY Rochester

STATE NY

ZIP CODE 14627-0171

COUNTRY US

EMAIL jonathan.carroll@rochester.edu

PHONE 315-406-7329

FAX

DN(S) CN=Jonathan Carroll,O=National Center for Supercomputing Approximately CN=Jonathan Center for Supercomputing Approximately CN=Jonathan Center for Supercomputing Approximately CN=Jonathan Center for Supercomputing CN=Jo

/C=US/O=National Center for Supercomputing Applications/CN=

CN=Jonathan Carroll, OU=People, O=National Center for Superco

/C=US/O=National Center for Supercomputing Applications/OU=

FIRST NAME Jason
MIDDLE NAME T

LAST NAME Nordhaus

ORGANIZATION Rochester Institute of Technology

POSITION Postdoctorate

DEGREE PhD

DEGREE FIELD

DEPARTMENT Center for Computational Relativity and Gravitation

ADDRESS Building 78

ADDRESS (CONT.)

CITY Rochester

STATE NY
ZIP CODE 14623
COUNTRY US

EMAIL nordhaus@astro.rit.edu

PHONE 585-261-7291

FAX URL(S) DN(S) FIRST NAME

MIDDLE NAME

LAST NAME

ORGANIZATION

POSITION DEGREE

DEGREE FIELD

DEPARTMENT ADDRESS

ADDRESS (CONT.)

CITY

STATE

ZIP CODE COUNTRY

EMAIL PHONE

FAX

URL(S) DN(S)

Martin

Huarte-Espinosa

University of Rochester

Postdoctorate

PhD

Dept. of Physics & Astronomy

Bausch & Lomb Building

Rochester

NY 14627

US

Baowei

martinhe@pas.rochester.edu

585-275-3089

CN=Martin Huarte-Espinosa, O=National Center for Supercomput

/C=US/O=National Center for Supercomputing Applications/CN=

CN=Martin Huarte-Espinosa, OU=People, O=National Center for S

/C=US/O=National Center for Supercomputing Applications/OU=

FIRST NAME

MIDDLE NAME

LAST NAME Liu

ORGANIZATION University of Rochester

POSITION Postdoctorate

PhD DEGREE **DEGREE FIELD Physics**

DEPARTMENT Dept. of Physics & Astronomy

500 Wilson Boulevard **ADDRESS**

ADDRESS (CONT.)

CITY Rochester STATE NY

ZIP CODE 14627-0171 COUNTRY **United States** EMAIL baowei.liu@rochester.edu

PHONE 585-276-4105

FAX

URL(S) DN(S)

CN=Baowei Liu,O=National Center for Supercomputing Applicat

/C=US/O=National Center for Supercomputing Applications/CN=

CN=Baowei Liu,O=TACC Classic CA,O=UT-AUSTIN,DC=TACC,DC=UTE

/DC=EDU/DC=UTEXAS/DC=TACC/O=UT-AUSTIN/O=TACC Classic CA/CN=

Top of page

Supporting Grant(s) Information

PI NAME Adam Frank

FUNDING AGENCY National Science Foundation (NSF)

FUNDING AGENCY DIVISION

PROGRAM OFFICER NAME Katharina Lodders
PROGRAM OFFICER EMAIL klodders@nsf.gov

FUNDING TITLE From Central Engine to Bipolar Outflow: Binaries, MHD and the Evolution of

Planetary Nebulae

AWARD NUMBER 406,000.00
AWARDED AMOUNT 135333
PERCENTAGE OF AWARD 50

SUPPORTING THIS REQUEST

 START DATE
 09/01/2011

 EXPIRATION DATE
 08/31/2014

FIELD OF SCIENCE Planetary Astronomy

COMMENT

PI NAME Adam Frank

FUNDING AGENCY Dept of Energy (DoE and labs)

FUNDING AGENCY DIVISION

PROGRAM OFFICER NAME Sean Finnegan

PROGRAM OFFICER EMAIL sean.finnegan@science.doe.gov

FUNDING TITLE Resolving the Issue: The Dynamics of Magnetized Astrophysical Jets through

Pulsed Powered HEDP Laboratory Studies

AWARD NUMBER 1,725,000.00
AWARDED AMOUNT 575000
PERCENTAGE OF AWARD 50

SUPPORTING THIS REQUEST

 START DATE
 08/15/2012

 EXPIRATION DATE
 08/14/2015

FIELD OF SCIENCE

Stellar Astronomy and Astrophysics

COMMENT

PI NAME

Adam Frank

FUNDING AGENCY

Other

FUNDING AGENCY DIVISION

Space Telescope Sci Institute

PROGRAM OFFICER NAME
PROGRAM OFFICER EMAIL

sessa@stsci.edu

Paula Sessa

FUNDING TITLE

STSci - Hubble Telescope - The Reel Deal: Interpreting HST Multi-Epoch

Movies of YSO JetsSpace

AWARD NUMBER

HST -AR-12128.01-A

AWARDED AMOUNT PERCENTAGE OF AWARD 95000 60

SUPPORTING THIS REQUEST

10/01/2010

09/30/2014

EXPIRATION DATE

Stellar Astronomy and Astrophysics

FIELD OF SCIENCE

COMMENT

START DATE

Top of page

Resources Requested

Please estimate what percentage of the work you expect to do in this allocation will be the following types (the 3 numbers should sum to 100):

Please estimate what percentage of the jobs you expect to run in this allocation will be the following types (the 3 numbers should sum to 100):

Please estimate what percentage of the science runs you expect to perform in this allocation will be the following types (the 4 numbers should sum to 100):

- · Production (actually doing research): 99
- Exploration/porting (preparing to do research):
- Submitted through command line/script: 100

 Independent but related (such as jobs that make up an ensemble or parameter sweeps):
 100

RESOURCE NAME

SDSC Appro with Intel Sandy Bridge Cluster (Gordon Compute Cluster)

RESOURCE REQUESTED 2500000

RESOURCE AWARDED AMOUNT

AMOUNT

RESOURCE NAME SDSC Medium-term disk storage (Data Oasis)

RESOURCE REQUESTED

3000

AMOUNT

RESOURCE AWARDED AMOUNT

RESOURCE NAME

TACC Dell PowerEdge C8220 Cluster with Intel Xeon Phi coprocessors

(Stampede) 5000000

RESOURCE REQUESTED

AMOUNT

RESOURCE AWARDED AMOUNT

RESOURCE NAME RESOURCE REQUESTED AMOUNT

TACC Long-term tape Archival Storage (Ranch) 12000

RESOURCE AWARDED AMOUNT

Top of page

Abstract

Observational evidence from local star-forming regions mandates that star formation occurs shortly after, or even during, molecular cloud formation. Models of the formation of molecular clouds in large-scale colliding flows have identified the physical mechanisms driving the necessary rapid fragmentation. They also point to global gravitational collapse driving supersonic turbulence in molecular clouds. In this work we propose exploring the effect of {\it magnetic fields} and {\it shear} in the colliding flow on the resulting clouds and the ensuing gravitational collapse. We also explore the role of triggering in star formation, namely the ability of supersonic flows to drive stable pre-existing clouds into collapse. We are particularly interested in the formation of (planet forming) accretion disks in the aftermath of triggering and the role of fields in inhibiting or altering collapse. Three new publications came from results obtained with our previous XSEDE allocation (AST130036) and we now seek resources to continue and expand our work. To achieve this goal we request the support of 5.0 million SU's on Stampede at TACC, 2.5 million SU's on Gordon at SDSC.

Top of page

PRINT

CLOSE WINDOW