
Bash Script

CIRC Summer School 2015
Baowei Liu

Command Lines VS. Bash Script

  Unix/Linux commands in a text file
  A series of commands executed in batch

mode

Review of Linux
Users

Shell

Kernel

Hardware

Linux and Shells

https://en.wikipedia.org/wiki/

  Easy to edit: long command lines
  Record & reusable: many command lines or

options

  Flexible and Efficient: Run with different
arguments.

  Easy to use with job scheduler

Bash Script VS. Command Lines

  File manipulation

  Wrappers

Examples Using Bash Script –
Pipeline things

Shell Script VS. Other Script
Language

  Easy to program: the commands and syntax
are exactly the same as those directly
entered at the command line. Quick start.

  Slow run speed comparing with other
programming languages

  Not easy for some tasks like floating point
calculations or math functions

  Not friendly to use: error messages/white
space.

Linux Commands

  ls: list directory contents
  cd: change directory
  man: manual
  echo

Linux Command echo

  Display a line of text
  Example: echo hello world
  “…” or ‘…’

To Write a Bash Script

  An editor: vi emacs, nano,….
  Specify interpreter as bash: #!/bin/bash
  Some Linux commands
  Comments: # (single line)
  Set executable permission

File permissions and First Script

  Three scopes and permissions
  Bash script has to have execute permission

to allow the operating system to run it.
  Check permissions: ls –l
  Add execute permission: chmod +x
  First script

Bash Variables
  Create a variable: name=value
  No data type
  No need to declare but can be declared with

“declare command”
  No space allowed before and after =
  Use $ to refer to the value: $name

Environment Variables

  env
  $SHELL
  $PATH
  $LD_LIBRARY_PATH
  $RANDOM
  $USER

Variable Value

  Assign value: a=2
  Pass value: b=$a
  Display value: echo $a
  Multiple Variables
  Strong quoting & weak quoting

Assign Variable Value

  Parameter expansion ${}
  Command Substitution: $(), or `
  Arithmetic expansion: $((…))

Arithmetic Expression

  Arithmetic operators: + - * /
  Integer only
  Arithmetic Expansion ((…))
  Floating point calculation: other tools like

bc, or awk

Basic calculator: bc

  An arbitrary precision calculator language
  Simple usage: echo $a+$b | bc
  Can use math library: echo “s(0.4)” | bc –l

Conditional Expression and if

  If condition
 then
 ….
 else
 ….
 fi

Conditional Expression

  Integers (Numeric Comparison): (())
  operators ==, !=,>,<,>=,<=
  You can use standard C-language operators

inside (())
  white spaces are not necessary

Conditional Expression: Strings

  Compare strings: [[“$a” = “$b”]]
  operators = or ==, !=, >, < (careful!)
  White spaces around [[]] and operators are

necessary!!
 if [[$a=$b]]; then
 echo "$a=$b"
else
 echo "$a!=$b"
 fi

  -n (not null), -z(null)

Compound Operators

  &&, ||

 if [[…]] && [[…]]
 then
 ….
 fi

Alternate Ways: Arithmetic
Expansion

  Old but more portable way [] or test

Compare Floating Point Numbers

  Use Basic Calculator: bc
 compare_results=`echo “$a>$b” | bc`
 double quotation are important!!
  Operators: ==, !=, >, >=, <, <=
  Convert to integer (Return 1 for True and 0

for False)
  Always check the command before using it!

Shell Expansions Review

  Parameter Expansion: $variable, $
{variable}

  Arithmetic Expansion: $((expression))
  Command Substitution: $() or ``

