
Bash Script

CIRC Summer School 2015
Baowei Liu

Command Lines VS. Bash Script

  Unix/Linux commands in a text file
  A series of commands executed in batch

mode

Review of Linux
Users

Shell

Kernel

Hardware

Linux and Shells

https://en.wikipedia.org/wiki/

  Easy to edit: long command lines
  Record & reusable: many command lines or

options

  Flexible and Efficient: Run with different
arguments.

  Easy to use with job scheduler

Bash Script VS. Command Lines

  File manipulation

  Wrappers

Examples Using Bash Script –
Pipeline things

Shell Script VS. Other Script
Language

  Easy to program: the commands and syntax
are exactly the same as those directly
entered at the command line. Quick start.

  Slow run speed comparing with other
programming languages

  Not easy for some tasks like floating point
calculations or math functions

  Not friendly to use: error messages/white
space.

Linux Commands

  ls: list directory contents
  cd: change directory
  man: manual
  echo

Linux Command echo

  Display a line of text
  Example: echo hello world
  “…” or ‘…’

To Write a Bash Script

  An editor: vi emacs, nano,….
  Specify interpreter as bash: #!/bin/bash
  Some Linux commands
  Comments: # (single line)
  Set executable permission

File permissions and First Script

  Three scopes and permissions
  Bash script has to have execute permission

to allow the operating system to run it.
  Check permissions: ls –l
  Add execute permission: chmod +x
  First script

Bash Variables
  Create a variable: name=value
  No data type
  No need to declare but can be declared with

“declare command”
  No space allowed before and after =
  Use $ to refer to the value: $name

Environment Variables

  env
  $SHELL
  $PATH
  $LD_LIBRARY_PATH
  $RANDOM
  $USER

Variable Value

  Assign value: a=2
  Pass value: b=$a
  Display value: echo $a
  Multiple Variables
  Strong quoting & weak quoting

Assign Variable Value

  Parameter expansion ${}
  Command Substitution: $(), or `
  Arithmetic expansion: $((…))

Arithmetic Expression

  Arithmetic operators: + - * /
  Integer only
  Arithmetic Expansion ((…))
  Floating point calculation: other tools like

bc, or awk

Basic calculator: bc

  An arbitrary precision calculator language
  Simple usage: echo $a+$b | bc
  Can use math library: echo “s(0.4)” | bc –l

Conditional Expression and if

  If condition
 then
 ….
 else
 ….
 fi

Conditional Expression

  Integers (Numeric Comparison): (())
  operators ==, !=,>,<,>=,<=
  You can use standard C-language operators

inside (())
  white spaces are not necessary

Conditional Expression: Strings

  Compare strings: [[“$a” = “$b”]]
  operators = or ==, !=, >, < (careful!)
  White spaces around [[]] and operators are

necessary!!
 if [[$a=$b]]; then
 echo "$a=$b"
else
 echo "$a!=$b"
 fi

  -n (not null), -z(null)

Compound Operators

  &&, ||

 if [[…]] && [[…]]
 then
 ….
 fi

Alternate Ways: Arithmetic
Expansion

  Old but more portable way [] or test

Compare Floating Point Numbers

  Use Basic Calculator: bc
 compare_results=`echo “$a>$b” | bc`
 double quotation are important!!
  Operators: ==, !=, >, >=, <, <=
  Convert to integer (Return 1 for True and 0

for False)
  Always check the command before using it!

Shell Expansions Review

  Parameter Expansion: $variable, $
{variable}

  Arithmetic Expansion: $((expression))
  Command Substitution: $() or ``

