
Bash Script

CIRC Summer School 2015
Baowei Liu

Filename Expansion / Globbing

  Expanding filenames containing special characters
  Wild cards * ?, not include . ..
  Square brackets [set]: “-”
  Special characters: ! (other than)
  Quote special pattern character if they are to be

matched literally
  Escaping backslash: protect a subsequent special

character

File Manipulation

  Examine the status of a file
 -a file: True if file exists
 -s file: True if file exists and has a size greater than zero
 -f file: True if file exists and is a regular file

  Compare files
 file1 –nt file2: newer than
 file1 –ot file2: older than

Merge files

  join: merge files by a common column
  cat: merge files by rows

Arrays
  Array is a numbered list
  One-dimensional only
  Create an array with = and (), or declare –a
  Array element: ArrayName[index]
  Access elements: ${ArrayName[n]} @, *
  Array size:${#ArrayName([@])},${#ArrayName([*])}
  Initialize an array with brace expansion
  Delete array or element: unset ArrayName[n]
  Add element without key: ArrayName+=(...)

Strings and Manipulation

  Create a string
  Display a string
  Length of a string
  Substring: a Bash string just holds one element
  Compare strings:
  Concatenate of string
  Substring extraction: position starting with 0
  Substring replacement

Compare Strings

  =: [[“$a” = “$b”]], white space are
important!!

  !=
  -z True if the string is null /zero-length
  -n True if the string is Not null

Substring Extraction

  ${string:position:length}
  ${string:position}

Substring Removal

  ${string#substring}
  ${string##substring}
  ${string%substring}
  ${string%%substring}

Substring Replacement

  ${string/substring/replacement}
  ${string//substring/replacement}
  ${string/#substring/replacement}
  ${string/%substring/replacement}

grep and Regular Expression

  grep: search for matches to a pattern in a
file and print the matched line to stdout

 grep PATTERN file
  Regular Expression: a sequence of

characters that define a search pattern,
mainly for string match -- globbing pattern
used for text

Regular Expression

  . : Equivalent to ? in filename expansion
  .*: any string. Equivalent to * in filename

expansion
  * : zero or more times, a* will match a,aa,…

but not ab
  ^: starting with, ^ab
  $: ending with, ab$

Regular Expression

  []: “[-]” “[^]”
  “\< >\” exact word

sed and Regular Expressions

  sed ‘s/abc/xyz’ File: All occurrences
  sed ‘5,10s/abc/xyz’ File: specified lines
  sed ‘0~2 s/abc/xyz/’ File: only in the even

lines
  More complicated examples

sed and Regular Expressions

  Word Characters: Alphanumeric characters
plus “_” [A-Za-z0-9_]

  Replace all occurrences in a line

awk

  A text-processing programming language in
Linux

  awk ‘{print $1}’
  Floating number calculations

head and tail

  –n
  –c
  -f

wc

  wc: print the number of bytes, words and
lines in a file.

  -c
  -l
  -w

Some Examples

Scenarios & Examples Using
Bash Script

  Multiple command lines / complicated
command lines: convert movie

  System monitoring tasks: back fill
  Run jobs periodically: revision monitor
  Wrappers

Job Scheduler Slurm
  Slurm
 1. Free and open-source job scheduler
 2. Arbitrate resources by managing a queue

of pending jobs
 3. Examples for submitting jobs to our local

systems can be found on
info.circ.rochester.edu

http://en.wikipedia.org/wiki/Slurm_Workload_Manager

Job Scheduler Cron

  Time-based job scheduler
  Schedule the command to run with crontab

–e
  Each line of a crontab file represents a

job

Cron and Crontab
  Specify the time:
 * * * * * script/command
 min hr dom m dow(0-6)

  Specify every five hour
 * */5 * * * script/command
 0 0 1 1,6 * script/command

  Non standard macros
 @yearly @reboot …

Stdin, stdout and stderr

  Stdin: standard in, data stream that is going
into a process

  Stdout: data stream coming from a running
process

  Stderr: data stream of error messages being
generated by a process

Redirect and Pipes

  Redirect between files including the three
file descriptors, stdin, stdout and stder: > >>

  Pipes takes the output of one command as
the input of another command |

