Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

Jena Meinecke^{a,1}, Petros Tzeferacos^b, Anthony Bell^a, Robert Bingham^{c,d}, Robert Clarke^c, Eugene Churazov^{e,f}, Robert Crowston^g, Hugo Doyle^a, R. Paul Drake^h, Robert Heathcote^c, Michel Koenigⁱ, Yasuhiro Kuramitsu^{j,k}, Carolyn Kuranz^h, Dongwook Lee^l, Michael MacDonald^h, Christopher Murphy^g, Margaret Notley^c, Hye-Sook Park^m, Alexander Pelka^{i,n}, Alessandra Ravasioⁱ, Brian Reville^o, Youichi Sakawa^k, Willow Wan^h, Nigel Woolsey^g, Roman Yurchakⁱ, Francesco Miniati^p, Alexander Schekochihin^a, Don Lamb^b, and Gianluca Gregori^{a,b,1}

^aDepartment of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; ^bDepartment of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; ^cRutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom; ^dDepartment of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom; ^eMax Planck Institute for Astrophysics, D-85741 Garching, Germany; ^fSpace Research Institute, Moscow 117997, Russia; ^gDepartment of Physics, University of York, YO1 5D, United Kingdom; ^hAtmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109; ^lLaboratoire pour l'Utilisation de Lasers Intenses, UMR7605, CNRS Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Université Paris VI Ecole Polytechnique, F-91128 Palaiseau Cedex, France; ^jDepartment of Physics, National Central University, Taoyuan 320, Taiwan; ^kInstitute of Laser Engineering, Osaka University, Osaka 565-0871, Japan; ^lApplied Mathematics and Statistics, University of California, Santa Cruz, CA 96064; ^mLawrence Livermore National Laboratory, Livermore, CA 94550; [°]Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany; ^oSchool of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom; and ^pDepartment of Physics, ETH Zürich, CH-8093 Zürich, Switzerland

Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved May 19, 2015 (received for review February 1, 2015)

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

galaxy clusters | laboratory analogues | lasers | magnetic fields | turbulence

n the early universe, matter was nearly homogenously distributed; today, as a result of gravitational instabilities, it forms a web-like structure consisting of filaments and galaxy clusters (1). The continued mergers of galaxies, filaments, and galaxy clusters inject turbulence into the intergalactic medium via shocks (2, 3). At the same time, the existence of diffuse synchrotron emission at radio wavelengths and Faraday rotation measurements indicate the presence of magnetic fields in galaxy clusters with strengths up to tens of microgausses (4, 5). The standard model for the origin of these intergalactic magnetic fields is amplification of seed fields via the turbulent dynamo mechanism to the present-day observed values (6–10), but other possibilities involving plasma kinetic instabilities (11–14), return currents (15, 16), or primordial mechanisms (17, 18) have also been invoked.

We have carried out experiments involving the collision of two plasma jets—reminiscent of cluster merger events—to produce a laboratory-scale replica of a turbulent intracluster plasma, although obviously our plasma is not confined in a dark matter potential well, as it is in clusters. In the intracluster medium, large-scale turbulent motions are influenced by density stratification and gravity. However, at smaller spatial scales, the time periods for buoyancy-driven motions are much longer than those of the turbulent motions, so the fluctuations at these scales are universal, and thus similar to the turbulence we can create in our laboratory experiments. The scale invariance of hydrodynamic equations (19, 20) implies, if we assume that a distance of 1 cm in the laboratory corresponds to 100 kiloparsecs in the astrophysical case, that 1 μ s becomes 0.5 Gy and a density of 4×10^{17} cm⁻³ is equivalent to 0.01 cm⁻³ in the galaxy cluster.

CrossMark

Our experiments were conducted using the Vulcan laser of the Central Laser Facility at the Rutherford Appleton Laboratory. We have focused multiple laser beams (with ~ 240 J total energy and ~ 1 -ns pulse duration) onto a carbon foil to launch a plasma jet into an ambient argon gas-filled chamber (at a pressure of 1 mbar). A full description of the experimental setup is given in Fig. 1. Ablation of target material by the laser drives a shock into the carbon foil, which then produces a collimated jet from the back surface of the target (i.e., the side opposite to that illuminated by the laser). The target material ablated by the laser is slowed by the ambient medium, creating a wraparound shock, visible in Fig. 1. Schlieren measurements were

Significance

Magnetic fields exist throughout the universe. Their energy density is comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter in the universe. The origin and the amplification of these magnetic fields to their observed strengths are far from being understood. The standard model for the origin of these galactic and intergalactic magnetic fields is through the amplification of seed fields via turbulent processes to the level consistent with current observations. For this process to be effective, the amplification needs to reach a strongly nonlinear phase. Experimental evidence of the initial nonlinear amplification of magnetic fields is presented in this paper.

Author contributions: B.R., F.M., A.S., D. Lamb, and G.G. conceived the project; J.M., R.B., R.P.D., C.M., B.R., N.W., A.S., and G.G. designed research; J.M., R. Clarke, R. Crowston, H.D., R.H., C.K., M.M., C.M., M.N., A.P., and W.W. carried out Vulcan experiment; J.M., E.C., and H.D. analyzed data; P.T. performed numerical simulations; P.T., A.B., M.K., Y.K., D. Lee, H.-S.P., A.R., B.R., Y.S., N.W., R.Y., F.M., A.S., D. Lamb provided further experimental and theoretical support; and J.M., P.T., A.B., H.D., B.R., A.S., D. Lamb, and G.G. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

¹To whom correspondence may be addressed. Email: g.gregori1@physics.ox.ac.uk or jena. meinecke@physics.ox.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1502079112/-/DCSupplemental.

Fig. 1. Colliding jet configuration for the generation of turbulence. Two carbon foils (100 μ m thick, with density 1.13 g/cm³) are separated by 60 mm in a 1±0.2 mbar argon gas-filled chamber. Each target is ablated by three frequency-doubled (527-nm-wavelength) laser beams with a laser spot diameter of 300 μ m. The total laser illumination onto each foil is 240±30 J in a 1-ns pulse length. An induction coil (\geq 200-MHz bandwidth, with four twisted pair coils wound around the axis of a ~ 1 × 1 mm² plastic core) is placed at equal distance between the foil targets. Additional details are given in ref. 10. (A) Schlieren image (using a 532-nm-wavelength probe and 5-ns CCD gate width) of the jet formations at *t* = 500 ns after the laser shot. (B) The jets collide at *t* = 800 ns, and (C) turbulence develops by *t* = 1,500 ns. (D) Magnetic field (*Top*) and mass density (*Bottom*) from a FLASH simulation of the two jets at *t* = 500 ns. (E) Same as D but at *t* = 1,500 ns. (F) same as G but at *t* = 1,500 ns. (g) Schlieren synthetic image obtained by postprocessing the FLASH results at *t* = 500 ns and 800 ns, but differ at *t* = 1,500 ns. The difference is likely due to a slight angle between the directions the two jets are moving, which allows part of the jets continue beyond the similal interaction region. This produces a much larger turbulent region in the experiment than in the simulation, where the 2D cylindrical geometry prevents us from accommodating this situation. Since the FLASH simulations are 2D cylindrical, the plane that most closely corresponds to the experimental data is the one that is perpendicular to the page and connects the two target foils. This plane does not contain the induction coil probe.

taken to characterize the outflows at various times. The fastest moving material occurs on axis (see Fig. 2) with $v_0 \approx 25$ km/s ($v_0/c_s \approx 4$, where c_s is the sound speed) at 3 cm from the target, while material on the edges of the jet moves more slowly as a result of Kelvin–Helmholtz shearing instabilities. Experiments were also performed using two sets of laser beams, each set illuminating a carbon foil, producing two jets that collide. The collision drives strong turbulence in a region that grows from a size $L \sim 1$ cm at $t = 0.8 \ \mu$ s to $L \approx 2 \ cm$ at $t > 1.5 \ \mu$ s, at which time the turbulence reaches a more relaxed state.

The turbulent velocity fluctuations on the system scale L can be estimated from Fig. 2B. At the collision point, the observed argon emission lines are broadened by ~ 0.2 nm. Half of this broadening is attributed to the increased density, and to a lesser extent to the higher temperatures (thermal broadening is small due to the large ion mass) (Supporting Information). The broadening due to turbulent motions is then ~ 0.1 nm, corresponding to a turbulent velocity $v_{turb} \approx 27 \pm 5$ km/s. Thus, $v_{turb} \approx v_0$, suggesting that the collision effectively randomizes the directed velocities of the two jets. Taking the measured values of jet velocity, density, and temperature in the collision region, and assuming an ionization state $Z \approx 2.5$ for argon, we estimate the interjet electron-ion $(\lambda_{ei} \approx 0.04 \text{ cm})$ and ion–ion $(\lambda_{ii} \approx 0.005 \text{ cm})$ mean free paths to be significantly smaller than the size of the jets. This confirms that the two jets strongly interact via Coulomb collisions and the contact surface between the two jets becomes quickly unstable. The Reynolds number calculated with respect to the scale L is thus $\text{Re} = v_{\text{turb}}L/\nu \approx 1.0 \times 10^6$ ($\nu \approx 2.8 \text{ cm}^2/\text{s}$ is the kinematic viscosity of the plasma).

For our plasma conditions, the radiative cooling rate per ion is $Q_{cool} \approx m_{ion} \kappa_P \sigma_{SB} T^4 \approx 0.5 \text{ eV/ns}$, where m_{ion} is the argon mass, $\kappa_P \sim 8 \times 10^4 \text{ cm}^2/\text{g}$ is the Planck opacity (see *Supporting Information*), and σ_{SB} is the Stefan–Boltzmann constant. This implies that during one jet crossing time, $\sim L/v_0 \approx 400$ ns, the plasma should have cooled to near 1 eV, as in the case of a single-jet expansion (detailed calculations are provided in *Supporting Information*). Fig. 2 instead shows that in the collision region the temperature remains $\gtrsim 2 \text{ eV}$ over a few L/v_0 , suggesting that much of the cooling must be offset by heating. Turbulent motions are eventually dissipated into heat. This heating rate per ion can be approximated to be $Q_{turb} \approx m_{ion} v_{turb}^3 / L \approx 0.6 \text{ eV/ns}$. Thus, $Q_{turb} \approx Q_{cool}$, consistent with turbulence playing an important role in achieving a stable temperature profile, with near balance between turbulent heating and radiative cooling.

We performed simulations of the experiments using the FLASH code (21, 22) (see *Supporting Information*). The results of the FLASH simulations are consistent with the measured properties of the jet, including its morphology and the physical conditions in the interaction region (Figs. 1 and 2). The simulations indicate enhanced vorticity as the two jets collide, and reproduce the increase in the electron density and the moderate rise in the temperature after the collision.

In some respects, our experimental conditions are qualitatively similar to those found in galaxy clusters, where heating driven by turbulent motions in the intracluster plasma reduces radiative losses and decreases the net cooling rate (23). On the other hand, while, in the inertial range, energy is transferred from one scale to another at a rate given by Q_{turb} , which has the same form in both clusters and laboratory experiments, the actual

Fig. 2. Characterization of jet propagation and collision. (*A*) Measurement of the jet leading edge vs. time from Schlieren data (blue symbols) and FLASH simulations (dashed green line). The FLASH simulation was calibrated to match the position of the leading edge of the jet at 800 ns for the measured value of the total laser energy for that data point. (*Inset*) The electron density profile obtained by interferometry at t = 800 ns compared with FLASH predictions. The density has been averaged over a volume of 5 mm radius from the axis connecting the two target foils. (*B*) Spatially resolved electron temperature profile of a single jet (blue symbols) and colliding jets (red symbols) at t = 800 ns obtained from the measured argon spectral lines (see *Supporting Information* for details). Solid lines (blue, single jet; red, colliding jets) correspond to the predicted temperature values from FLASH simulations at t = 800 ns, averaged over the same volume as the electron density. Dashed lines are the results from the same FLASH simulations at t = 1,500 ns. (*Inset*) An example of the argon spectral line at t = 800 ns and 3 cm from the carbon foil target (averaged over 0.1 cm).

mechanism for energy dissipation into heat can be different. This is dominated by collisional, isotropic viscosity in the laboratory, whereas in clusters, at a minimum, one must take into account

that viscosity is anisotropic due to magnetic fields, and, furthermore, kinetic processes may play an important role (8). Thus, the similarity between the laboratory "replica" and the

Fig. 3. Power spectra of turbulence. (A) Plot of the density fluctuation power spectrum $P(k) = |n_k/n_0|^2$, where n_k is the discrete Fourier transform of the space-dependent electron density and n_0 is its average value. In Schlieren imaging, the measured signal intensity is proportional to $\int (\partial n/\partial y + \partial n/\partial z) dx$, where n is the electron density, $x_i y$ are the image plane spatial coordinates, and z is the depth (35). Therefore, under the assumption that turbulence is statistically homogeneous across the jet interaction region, the discrete Fourier transform of the central region of the jet collision in Fig. 1C directly gives n_k . The power spectrum is arbitrarily normalized so that $P(k) \approx 1$ at the largest scale. The solid red curve corresponds to the experimental data, while the black and green symbols correspond to the inferred density spectrum in the Coma cluster obtained from CHANDRA and XMM satellite observations, respectively (25). (B) Plot of the magnetic energy spectrum $M(\omega) = |B(\omega)|^2$, where $B(\omega)$ is the discrete Fourier transform of the total magnetic field for the case of a single jet (blue solid line) and with colliding jets (red solid line). The slope of the spectrum in the case of colliding jets is shallower than in the case of a single jet (where it is consistent with the $k^{-1/3}$ Golitsyn spectrum, assuming conversion from frequencies to wavenumbers according to Taylor hypothesis, $\omega \approx v_0 k$). This gradual shallowing of the spectrum with increasing Rm is a signature of the dynamo precursor regime (31). The measured frequency spectrum, $\sim k^{-1.9}$, in the case of colliding jets, where Taylor's hypothesis is inapplicable (see *Supporting Information*).

Fig. 4. Time evolution of the magnetic field. (A) The magnetic field components measured at 3 cm from the carbon foil in the case of a single jet (see Fig. 1 for the axis coordinates). (B) Magnetic field components measured in the case of jet collision. The time resolution of the magnetic field traces is 10 ns. These have been extracted from the recorded induction coil voltages. Details are given in ref. 10. The initial (t < 100 ns) high-frequency noise due to the laser–plasma interaction with the target has been filtered. The dashed lines in both panels correspond to the average azimuthal magnetic field obtained from the FLASH simulations in a volume of radius 1 mm and length 3 mm centered at the midpoint between the two target foils. Due to cylindrical symmetry of the simulation domain, the measured component that is closest to the calculated one is B_z .

astrophysical reality can only hold at scales larger than the viscous one.

During hierarchical structure formation, clusters form from accretion of filaments, galaxies, galaxy groups, and cluster mergers. In clusters of galaxies, turbulent velocities can be inferred from the density perturbations, which, in turn, are obtained using the measured X-ray radiation intensities (23-25). The turbulence in clusters is mainly subsonic at small scales (and near sonic at large scales), so density fluctuations (injected at large scales) behave like a passive scalar. Therefore, the density and velocity spectra are expected to be the same (26). The fact that turbulence is moderately supersonic in our experiment, while subsonic in clusters, is likely to lead to only a modest change in the power spectra (and at small enough scales, motions will, in any event, become subsonic). Indeed, spectroscopic observations of supersonic motions in molecular clouds (27) suggest a velocity power spectrum close to the classical Kolmogorov $k^{-5/3}$ law (where k is the wavenumber) that holds for incompressible fluids. Numerical simulations of supersonic turbulence show a spectrum somewhat steeper than Kolmogorov's, $k^{-1.7}$ to k^{-2} , depending on the details of the driving mechanism (28). These differences are smaller that the uncertainties in our power spectrum measurements.

We have extracted the power spectrum of the electron density fluctuations from our data. The result is shown in Fig. 3*A*, using

While $\text{Re} \gg 1$ and turbulent motions are excited over a large range of scales, the magnetic Reynolds number is $Rm = v_{turb}L/L$ $\eta \approx 14$ ($\eta = 1.9 \times 10^5$ cm²/s is the resistivity), so the resistive scale lies well above the viscous scale, and close to the system scale, L. Since Rm is not very large in the experiment, the full magnetohydrodynamic (MHD) scaling between the cluster and the laboratory is only marginally valid (20). At such Rm, turbulent dynamo, believed to be the mechanism whereby strong fields are generated in galaxy clusters (7, 8), does not operate, but the magnetic fields can be amplified via stochastic tangling of an imposed field by turbulent motions (29, 30). At small Rm (≤ 1), the amplified field grows proportionally to Rm and has the Golitsyn (29) $k^{-11/3}$ power law, which arises in Kolmogorov turbulence when the stochastic tangling of the magnetic field is balanced by Ohmic diffusion. As Rm gets larger, the scaling of the amplified field gets closer to $Rm^{1/2}$, and its spectrum becomes shallower (31). Eventually, there is a transition to the turbulent dynamo regime, expected at $Rm \approx 200$.

In our experiment, magnetic fields are generated, before the collision, via the Biermann battery mechanism (32, 33), which is sustained by the shearing instability between the jet and the ambient medium. It is this field that is then tangled and amplified by turbulent motions. Fig. 4 shows that the magnetic field is larger by a factor of $\sim 2-3$ in the case of collision of the two jets compared with the unperturbed single jet. The FLASH simulation reproduces the morphology and time behavior of the magnetic field, including the time at which the field changes sign. We expect the simulation to underpredict the peak magnetic field in the colliding jets case since turbulent amplification is not properly captured in 2D geometry.

Most importantly, the amplified magnetic field detected in the experiment is larger than the Biermann battery-produced field. This suggests that amplification has reached the nonlinear regime, with the amplified field roughly proportional to Rm^{1/2}. This conclusion is further supported by measurement of the magnetic energy spectrum $M(\omega)$, shown in Fig. 3*B*. Translated into wavenumber spectrum, this spectrum is $M(k) \approx k^{-17/9}$ (see *Supporting Information*), substantially shallower than the low-Rm Golitsyn spectrum $k^{-11/3}$ (29), which we observe in the case of no jet collision, so both less turbulence and lower Rm (10). The emergence of progressively shallower magnetic spectra is a sign of nonlinear field amplification, which is a precursor to turbulent dynamo (31).

Despite important differences, the laboratory simulation of an intracluster plasma that we have created offers an important tool for modeling the amplification of magnetic fields by turbulent astrophysical plasmas.

ACKNOWLEDGMENTS. We thank the Vulcan technical team at the Central Laser Facility of the Rutherford Appleton Laboratory for their support during the experiments. The research leading to these results has received funding from the European Research Council (ERC) under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreements 256973 and 247039, and the US Department of Energy under Contract B591485 to Lawrence Livermore National Laboratory and Field Work Proposal 57789 to Argonne National Laboratory. This work was supported in part by National Institutes of Health through resources provided by the Computation Institute and the Biological Sciences Division of the University of Chicago and Argonne National Laboratory, under Grant S10 RR029030-01. Partial support from the Science and Technology Facilities Council and the Engineering and Physical Sciences Research Council of the United Kingdom (Grant EP/G007187/1) is also acknowledged. The work of R.P.D, C.K., M.M., and W.W. was supported by the US Department of Energy under Grant DE-NA0001840.

- Miniati F, et al. (2000) Properties of cosmic shock waves in large-scale structure formation. Astrophys J 542:608–621.
- Norman ML, Bryan GL (1999) Cluster Turbulence, Lecture Notes in Physics, eds Röser HJ, Meisenheimer K (Springer, Berlin), Vol 530.
- Miniati F (2014) The Matryoshka run: A Eulerian refinement strategy to study the statistics of turbulence in virialized cosmic structures. Astrophys J 782(1):21.
- Govoni F, Feretti L (2004) Magnetic fields in clusters of galaxies. Int J Mod Phys D 13: 1549–1594.
- Bernet ML, Miniati F, Lilly SJ, Kronberg PP, Dessauges-Zavadsky M (2008) Strong magnetic fields in normal galaxies at high redshift. *Nature* 454(7202):302–304.
- Parker EN (1955) Hydromagnetic dynamo models. Astrophys J 122:293–314.
 Zweibel EG, Heiles C (1997) Magnetic fields in galaxies and beyond. Nature 385:
- 131–136.
 Schekochihin AA, Cowley SC (2006) Turbulence, magnetic fields, and plasma physics in clusters of galaxies. *Phys Plasmas* 13:056501.
- Ryu D, Kang H, Cho J, Das S (2008) Turbulence and magnetic fields in the large-scale structure of the universe. *Science* 320(5878):909–912.
- Meinecke J, et al. (2014) Turbulent amplification of magnetic fields in laboratory laser-produced shock waves. Nat Phys 10:520–524.
- Schlickeiser R, Shukla PK (2003) Cosmological magnetic field generation by the Weibel instability. Astrophys J 599:L57–L60.
- 12. Medvedev MV, Silva LO, Kamionkowski M (2006) Cluster magnetic fields from largescale Structure and galaxy cluster shocks. Astrophys J 642:L1–L4.
- Huntington CM, et al. (2015) Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. *Nat Phys* 11:173–176.
- Park HS, et al. (2015) Collisionless shock experiments with lasers and observation of Weibel instabilities. *Phys Plasmas* 22(5):056311.
- Langer M, Aghanim N, Puget J (2005) Magnetic fields from reionisation. Astron Astrophys 443:367–372.
- Miniati F, Bell AR (2011) Resistive magnetic fields at cosmic dawn. Astrophys J 729:73.
 Harrison ER (1970) Generation of magnetic fields in the radiation era. Mon Not R
- Astron Soc 147:279–286. 18. Durrer R, Neronov A (2013) Cosmological magnetic fields: Their generation, evolution and observation. Astron Astrophys Rev 21:62.
- Ryutov D, et al. (1999) Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys J 518:821–832.
- Cross JE, Reville B, Gregori G (2014) Scaling of magneto-quantum-radiative hydrodynamic equations: From laser-produced plasmas to astrophysics. Astrophys J 795:59.
- Tzeferacos P, et al. (2012) Magnetohydrodynamic simulations of shock-generated magnetic field experiments. *High Energy Density Phys* 8:322–328.
- Tzeferacos P, et al. (2014) FLASH MHD simulations of experiments that study shockgenerated magnetic fields. *High Energy Density Phys*, 10.1016/j.hedp.2014.11.003.
- Zhuravleva I, et al. (2014) Turbulent heating in the X-ray brightest galaxy clusters. Nature 515(7525):85–87.
- Schuecker P, Finoguenov A, Miniati F, Böhringer H, Briel U (2004) Probing turbulence in the Coma galaxy cluster. Astron Astrophys 426:387–397.
- Churazov E, et al. (2012) X-ray surface brightness and gas density fluctuations in the Coma cluster. Mon Not R Astron Soc 421:1123–1135.
- Zhuravleva I, et al. (2014) The relation between gas density and velocity power spectra in galaxy clusters: Qualitative treatment and cosmological simulations. Astrophys J 788:L13.

- 27. Larson RB (1981) Turbulence and star formation in molecular clouds. Mon Not R Astron Soc 194:809–826.
- Federrath C (2013) On the universality of supersonic turbulence. Mon Not R Astron Soc 436:1245–1257.
- Golitsyn GS (1960) Fluctuations of the magnetic field and current density in a turbulent flow of a weakly conducting fluid. Sov Phys Dokl 5:536–539.
- Moffatt HK (1961) The amplification of a weak applied magnetic field by turbulence in fluids of moderate conductivity. J Fluid Mech 11:625–635.
- Schekochihin AA, et al. (2007) Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers. New J Phys 9:300.
- Biermann L (1950) Über den ursprung der magnetfelder auf sternen und im interstellaren raum. Z Naturforsch A 5:65–71.
- Gregori G, et al. (2012) Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves. *Nature* 481(7382):480–483.
- MacFarlane J, Golovkin I, Wang P, Woodruff P, Pereyra N (2007) Spect3d—A multidimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. *High Energy Density Phys* 3:181–190.
- 35. Settles GS (2001) Schlieren and Shadowgraph Techniques (Springer, Berlin).
- Fryxell B, et al. (2000) FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys J 131:S273–S334.
- Dubey A, et al. (2009) Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code. *Parallel Comput* 35(10-11):512–522.
- Lee D (2013) A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics. J Comput Phys 243:269–292.
- 39. Fatenejad M, et al. (2013) Modeling HEDLA magnetic field generation experiments on laser facilities. *High Energy Density Phys* 9:172–177.
- Li S (2005) An HLLC Riemann solver for magneto-hydrodynamics. J Comput Phys 203: 344–357.
- 41. Kerley S (1972) Equation of state and phase diagram of dense hydrogen. *Phys Earth Planet Inter* 6:78–82.
- Zel'dovich YB, Raizer YP (1966) Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York).
- MacFarlane J, Golovkin I, Woodruff P (2006) HELIOS-CR—A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. J Quant Spectrosc Radiat Transfer 99:381–397.
- McWhirter RWP (1978) Review paper A5. Data needs, priorities and accuracies for plasma spectroscopy. *Phys Rep* 37(2):165–209.
- Tsakiris GD, Eidmann K (1987) An approximate method for calculating Planck and Rosseland mean opacities in hot, dense plasmas. J Quant Spectrosc Radiat Transfer 8: 353–368.
- Malagoli A, Rosner R, Bodo G (1987) On the thermal instability of galactic and cluster halos. Astrophys J 319:632–636.
- 47. Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A Math Phys Sci 164: 467–490.
- Park H-S, et al. (2012) Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers. *High Energy Density Phys* 8:38–45.
- Drake RP, Gregori G (2012) Design considerations for unmagnetized collisionlessshock measurements in homologous flows. Astrophys J 479:171.
- Kato TN, Takabe H (2008) Nonrelativistic collisionless shocks in unmagnetized electron-ion plasmas. Astrophys J 681:L93–L96.
- 51. Ichimaru S (2004) Statistical Plasma Physics (Westview, Boulder, CO).