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The visible matter in the universe is turbulent and magnetized.
Turbulence in galaxy clusters is produced by mergers and by jets of
the central galaxies and believed responsible for the amplification
of magnetic fields. We report on experiments looking at the
collision of two laser-produced plasma clouds, mimicking, in the
laboratory, a cluster merger event. By measuring the spectrum of
the density fluctuations, we infer developed, Kolmogorov-like
turbulence. From spectral line broadening, we estimate a level of
turbulence consistent with turbulent heating balancing radiative
cooling, as it likely does in galaxy clusters. We show that the
magnetic field is amplified by turbulent motions, reaching a
nonlinear regime that is a precursor to turbulent dynamo. Thus,
our experiment provides a promising platform for understanding
the structure of turbulence and the amplification of magnetic
fields in the universe.
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In the early universe, matter was nearly homogenously distrib-
uted; today, as a result of gravitational instabilities, it forms a

web-like structure consisting of filaments and galaxy clusters (1).
The continued mergers of galaxies, filaments, and galaxy clusters
inject turbulence into the intergalactic medium via shocks (2, 3).
At the same time, the existence of diffuse synchrotron emission
at radio wavelengths and Faraday rotation measurements in-
dicate the presence of magnetic fields in galaxy clusters with
strengths up to tens of microgausses (4, 5). The standard model
for the origin of these intergalactic magnetic fields is amplifica-
tion of seed fields via the turbulent dynamo mechanism to the
present-day observed values (6–10), but other possibilities in-
volving plasma kinetic instabilities (11–14), return currents
(15, 16), or primordial mechanisms (17, 18) have also been invoked.
We have carried out experiments involving the collision of two

plasma jets—reminiscent of cluster merger events—to produce a
laboratory-scale replica of a turbulent intracluster plasma, al-
though obviously our plasma is not confined in a dark matter
potential well, as it is in clusters. In the intracluster medium,
large-scale turbulent motions are influenced by density stratifi-
cation and gravity. However, at smaller spatial scales, the time
periods for buoyancy-driven motions are much longer than those
of the turbulent motions, so the fluctuations at these scales are
universal, and thus similar to the turbulence we can create in our
laboratory experiments. The scale invariance of hydrodynamic
equations (19, 20) implies, if we assume that a distance of 1 cm in

the laboratory corresponds to 100 kiloparsecs in the astrophysi-
cal case, that 1 μs becomes 0.5 Gy and a density of 4× 1017 cm−3

is equivalent to 0.01 cm−3 in the galaxy cluster.
Our experiments were conducted using the Vulcan laser of the

Central Laser Facility at the Rutherford Appleton Labora-
tory. We have focused multiple laser beams (with ∼ 240 J total
energy and ∼ 1-ns pulse duration) onto a carbon foil to launch
a plasma jet into an ambient argon gas-filled chamber (at a pres-
sure of 1 mbar). A full description of the experimental setup is
given in Fig. 1. Ablation of target material by the laser drives a
shock into the carbon foil, which then produces a collimated
jet from the back surface of the target (i.e., the side opposite
to that illuminated by the laser). The target material ablated by
the laser is slowed by the ambient medium, creating a wrap-
around shock, visible in Fig. 1. Schlieren measurements were

Significance

Magnetic fields exist throughout the universe. Their energy
density is comparable to the energy density of the fluid mo-
tions of the plasma in which they are embedded, making
magnetic fields essential players in the dynamics of the lumi-
nous matter in the universe. The origin and the amplification of
these magnetic fields to their observed strengths are far from
being understood. The standard model for the origin of these
galactic and intergalactic magnetic fields is through the am-
plification of seed fields via turbulent processes to the level
consistent with current observations. For this process to be
effective, the amplification needs to reach a strongly nonlinear
phase. Experimental evidence of the initial nonlinear amplifi-
cation of magnetic fields is presented in this paper.

Author contributions: B.R., F.M., A.S., D. Lamb, and G.G. conceived the project; J.M., R.B.,
R.P.D., C.M., B.R., N.W., A.S., and G.G. designed research; J.M., R. Clarke, R. Crowston,
H.D., R.H., C.K., M.M., C.M., M.N., A.P., and W.W. carried out Vulcan experiment; J.M.,
E.C., and H.D. analyzed data; P.T. performed numerical simulations; P.T., A.B., M.K., Y.K.,
D. Lee, H.-S.P., A.R., B.R., Y.S., N.W., R.Y., F.M., A.S., D. Lamb provided further experi-
mental and theoretical support; and J.M., P.T., A.B., H.D., B.R., A.S., D. Lamb, and G.G.
wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence may be addressed. Email: g.gregori1@physics.ox.ac.uk or jena.
meinecke@physics.ox.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1502079112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1502079112 PNAS | July 7, 2015 | vol. 112 | no. 27 | 8211–8215

PH
YS

IC
S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1502079112&domain=pdf
mailto:g.gregori1@physics.ox.ac.uk
mailto:jena.meinecke@physics.ox.ac.uk
mailto:jena.meinecke@physics.ox.ac.uk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1502079112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1502079112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1502079112


taken to characterize the outflows at various times. The fastest
moving material occurs on axis (see Fig. 2) with v0 ≈ 25 km/s
(v0=cs ≈ 4, where cs is the sound speed) at 3 cm from the target,
while material on the edges of the jet moves more slowly as a
result of Kelvin–Helmholtz shearing instabilities. Experiments
were also performed using two sets of laser beams, each set il-
luminating a carbon foil, producing two jets that collide. The
collision drives strong turbulence in a region that grows from a
size L∼ 1 cm at t= 0.8 μs to L≈ 2 cm at t> 1.5 μs, at which time
the turbulence reaches a more relaxed state.
The turbulent velocity fluctuations on the system scale L can

be estimated from Fig. 2B. At the collision point, the observed
argon emission lines are broadened by ∼ 0.2 nm. Half of this
broadening is attributed to the increased density, and to a lesser
extent to the higher temperatures (thermal broadening is small
due to the large ion mass) (Supporting Information). The broad-
ening due to turbulent motions is then ∼ 0.1 nm, corresponding to
a turbulent velocity vturb ≈ 27± 5 km/s. Thus, vturb ≈ v0, suggesting
that the collision effectively randomizes the directed velocities of
the two jets. Taking the measured values of jet velocity, density,
and temperature in the collision region, and assuming an ioniza-
tion state Z≈ 2.5 for argon, we estimate the interjet electron–ion
(λei ≈ 0.04 cm) and ion–ion (λii ≈ 0.005 cm) mean free paths to be
significantly smaller than the size of the jets. This confirms that the
two jets strongly interact via Coulomb collisions and the contact
surface between the two jets becomes quickly unstable. The
Reynolds number calculated with respect to the scale L is thus
Re= vturbL=ν≈ 1.0× 106 (ν≈ 2.8 cm2/s is the kinematic viscosity of
the plasma).

For our plasma conditions, the radiative cooling rate per ion is
Qcool ≈mionκPσSBT4 ≈ 0.5 eV/ns, where mion is the argon mass,
κP ∼ 8× 104 cm2/g is the Planck opacity (see Supporting In-
formation), and σSB is the Stefan–Boltzmann constant. This im-
plies that during one jet crossing time, ∼L=v0 ≈ 400 ns, the plasma
should have cooled to near 1 eV, as in the case of a single-jet
expansion (detailed calculations are provided in Supporting In-
formation). Fig. 2 instead shows that in the collision region the
temperature remains J 2 eV over a few L=v0, suggesting that
much of the cooling must be offset by heating. Turbulent motions
are eventually dissipated into heat. This heating rate per ion can
be approximated to be Qturb ≈mionv3turb= L≈ 0.6 eV/ns. Thus,
Qturb ≈Qcool, consistent with turbulence playing an important role
in achieving a stable temperature profile, with near balance be-
tween turbulent heating and radiative cooling.
We performed simulations of the experiments using the

FLASH code (21, 22) (see Supporting Information). The results
of the FLASH simulations are consistent with the measured
properties of the jet, including its morphology and the physical
conditions in the interaction region (Figs. 1 and 2). The simu-
lations indicate enhanced vorticity as the two jets collide, and
reproduce the increase in the electron density and the moderate
rise in the temperature after the collision.
In some respects, our experimental conditions are qualita-

tively similar to those found in galaxy clusters, where heating
driven by turbulent motions in the intracluster plasma reduces
radiative losses and decreases the net cooling rate (23). On the
other hand, while, in the inertial range, energy is transferred from
one scale to another at a rate given by Qturb, which has the same
form in both clusters and laboratory experiments, the actual

Fig. 1. Colliding jet configuration for the generation of turbulence. Two carbon foils (100 μm thick, with density 1.13 g/cm3) are separated by 60 mm in a
1± 0.2 mbar argon gas-filled chamber. Each target is ablated by three frequency-doubled (527-nm-wavelength) laser beams with a laser spot diameter of
300 μm. The total laser illumination onto each foil is 240± 30 J in a 1-ns pulse length. An induction coil (J 200-MHz bandwidth, with four twisted pair coils
wound around the axis of a ∼ 1× 1 mm2 plastic core) is placed at equal distance between the foil targets. Additional details are given in ref. 10. (A) Schlieren
image (using a 532-nm-wavelength probe and 5-ns CCD gate width) of the jet formations at t = 500 ns after the laser shot. (B) The jets collide at t = 800 ns, and
(C) turbulence develops by t = 1,500 ns. (D) Magnetic field (Top) and mass density (Bottom) from a FLASH simulation of the two jets at t = 500 ns. (E) Same as D
but at t = 800 ns. (F) same as D but at t =1,500 ns. (g) Schlieren synthetic image obtained by postprocessing the FLASH results at t = 500 ns using Spect3D (34).
(H) Same as G but at t = 800 ns. (I) same as G but at t = 1,500 ns. The measured and simulated Schlieren images are similar at t = 500 ns and 800 ns, but differ at
t = 1,500 ns. The difference is likely due to a slight angle between the directions the two jets are moving, which allows part of the jets to continue beyond the
initial interaction region. This produces a much larger turbulent region in the experiment than in the simulation, where the 2D cylindrical geometry prevents
us from accommodating this situation. Since the FLASH simulations are 2D cylindrical, the plane that most closely corresponds to the experimental data is the
one that is perpendicular to the page and connects the two target foils. This plane does not contain the induction coil probe.
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mechanism for energy dissipation into heat can be different. This
is dominated by collisional, isotropic viscosity in the laboratory,
whereas in clusters, at a minimum, one must take into account

that viscosity is anisotropic due to magnetic fields, and, fur-
thermore, kinetic processes may play an important role (8).
Thus, the similarity between the laboratory “replica” and the
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Fig. 2. Characterization of jet propagation and collision. (A) Measurement of the jet leading edge vs. time from Schlieren data (blue symbols) and FLASH
simulations (dashed green line). The FLASH simulation was calibrated to match the position of the leading edge of the jet at 800 ns for the measured value of
the total laser energy for that data point. (Inset) The electron density profile obtained by interferometry at t = 800 ns compared with FLASH predictions. The
density has been averaged over a volume of 5 mm radius from the axis connecting the two target foils. (B) Spatially resolved electron temperature profile of a
single jet (blue symbols) and colliding jets (red symbols) at t = 800 ns obtained from the measured argon spectral lines (see Supporting Information for details).
Solid lines (blue, single jet; red, colliding jets) correspond to the predicted temperature values from FLASH simulations at t = 800 ns, averaged over the same
volume as the electron density. Dashed lines are the results from the same FLASH simulations at t = 1,500 ns. (Inset) An example of the argon spectral line at
t =800 ns and 3 cm from the carbon foil target (averaged over 0.1 cm).

A B

Fig. 3. Power spectra of turbulence. (A) Plot of the density fluctuation power spectrum PðkÞ= jnk=n0j2, where nk is the discrete Fourier transform of the
space-dependent electron density and n0 is its average value. In Schlieren imaging, the measured signal intensity is proportional to

R ð∂n=∂y + ∂n=∂zÞdx, where
n is the electron density, x,y are the image plane spatial coordinates, and z is the depth (35). Therefore, under the assumption that turbulence is statistically
homogeneous across the jet interaction region, the discrete Fourier transform of the central region of the jet collision in Fig. 1C directly gives nk. The power
spectrum is arbitrarily normalized so that PðkÞ≈ 1 at the largest scale. The solid red curve corresponds to the experimental data, while the black and green
symbols correspond to the inferred density spectrum in the Coma cluster obtained from CHANDRA and XMM satellite observations, respectively (25). (B) Plot
of the magnetic energy spectrum MðωÞ= jBðωÞj2, where BðωÞ is the discrete Fourier transform of the total magnetic field for the cases both with a single jet
(blue solid line) and with colliding jets (red solid line). The slope of the spectrum in the case of colliding jets is shallower than in the case of a single jet (where
it is consistent with the k−11=3 Golitsyn spectrum, assuming conversion from frequencies to wavenumbers according to Taylor hypothesis, ω≈ v0k). This gradual
shallowing of the spectrum with increasing Rm is a signature of the dynamo precursor regime (31). The measured frequency spectrum, ∼ω−7=3, can be argued
to correspond to wavenumber spectrum, ∼ k−1.9, in the case of colliding jets, where Taylor’s hypothesis is inapplicable (see Supporting Information).
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astrophysical reality can only hold at scales larger than the
viscous one.
During hierarchical structure formation, clusters form from

accretion of filaments, galaxies, galaxy groups, and cluster
mergers. In clusters of galaxies, turbulent velocities can be
inferred from the density perturbations, which, in turn, are
obtained using the measured X-ray radiation intensities (23–25).
The turbulence in clusters is mainly subsonic at small scales (and
near sonic at large scales), so density fluctuations (injected at
large scales) behave like a passive scalar. Therefore, the density
and velocity spectra are expected to be the same (26). The fact
that turbulence is moderately supersonic in our experiment,
while subsonic in clusters, is likely to lead to only a modest
change in the power spectra (and at small enough scales, motions
will, in any event, become subsonic). Indeed, spectroscopic ob-
servations of supersonic motions in molecular clouds (27) sug-
gest a velocity power spectrum close to the classical Kolmogorov
k−5=3 law (where k is the wavenumber) that holds for in-
compressible fluids. Numerical simulations of supersonic turbu-
lence show a spectrum somewhat steeper than Kolmogorov’s,
k−1.7 to k−2, depending on the details of the driving mechanism
(28). These differences are smaller that the uncertainties in our
power spectrum measurements.
We have extracted the power spectrum of the electron density

fluctuations from our data. The result is shown in Fig. 3A, using

the wavelet method discussed in ref. 25, which was used there for
the analysis of X-ray maps of the Coma cluster. The spectrum is
consistent with a Kolmogorov-like power law, as expected from
the theoretical work we discuss above, suggesting that we do
indeed see fully developed turbulence. A similar spectrum was
obtained in galaxy clusters (24, 25).
While Re � 1 and turbulent motions are excited over a large

range of scales, the magnetic Reynolds number is Rm= vturbL=
η≈ 14 (η= 1.9× 105 cm2/s is the resistivity), so the resistive scale
lies well above the viscous scale, and close to the system scale,
L. Since Rm is not very large in the experiment, the full mag-
netohydrodynamic (MHD) scaling between the cluster and the
laboratory is only marginally valid (20). At such Rm, turbulent
dynamo, believed to be the mechanism whereby strong fields are
generated in galaxy clusters (7, 8), does not operate, but the
magnetic fields can be amplified via stochastic tangling of an
imposed field by turbulent motions (29, 30). At small Rm (K 1),
the amplified field grows proportionally to Rm and has the
Golitsyn (29) k−11=3 power law, which arises in Kolmogorov
turbulence when the stochastic tangling of the magnetic field is
balanced by Ohmic diffusion. As Rm gets larger, the scaling of
the amplified field gets closer to Rm1=2, and its spectrum
becomes shallower (31). Eventually, there is a transition to the
turbulent dynamo regime, expected at Rm≈ 200.
In our experiment, magnetic fields are generated, before the

collision, via the Biermann battery mechanism (32, 33), which is
sustained by the shearing instability between the jet and the
ambient medium. It is this field that is then tangled and ampli-
fied by turbulent motions. Fig. 4 shows that the magnetic field is
larger by a factor of ∼ 2–3 in the case of collision of the two jets
compared with the unperturbed single jet. The FLASH simula-
tion reproduces the morphology and time behavior of the mag-
netic field, including the time at which the field changes sign. We
expect the simulation to underpredict the peak magnetic field in
the colliding jets case since turbulent amplification is not prop-
erly captured in 2D geometry.
Most importantly, the amplified magnetic field detected in the

experiment is larger than the Biermann battery-produced field.
This suggests that amplification has reached the nonlinear re-
gime, with the amplified field roughly proportional to Rm1/2.
This conclusion is further supported by measurement of the
magnetic energy spectrum MðωÞ, shown in Fig. 3B. Translated
into wavenumber spectrum, this spectrum is MðkÞ≈ k−17=9 (see
Supporting Information), substantially shallower than the low-Rm
Golitsyn spectrum k−11=3 (29), which we observe in the case of no
jet collision, so both less turbulence and lower Rm (10). The
emergence of progressively shallower magnetic spectra is a sign
of nonlinear field amplification, which is a precursor to turbulent
dynamo (31).
Despite important differences, the laboratory simulation of an

intracluster plasma that we have created offers an important tool
for modeling the amplification of magnetic fields by turbulent
astrophysical plasmas.
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Fig. 4. Time evolution of the magnetic field. (A) The magnetic field com-
ponents measured at 3 cm from the carbon foil in the case of a single jet (see
Fig. 1 for the axis coordinates). (B) Magnetic field components measured in
the case of jet collision. The time resolution of the magnetic field traces is
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