

W Asymmetry and PDF's - CDF and LHC Analyses

CMS Physics Week Monday 21 July 2008, 2:00-2:30 pm http://indico.cern.ch/conferenceDisplay.py?confld=27603

7/17/08 1

Outline

 W Asymmetry and relations to PDFs (Better to look at W-/W+ versus y)

- New technique used in CDF : Unfolding the Wlepton Charge Asymmetry to extract the true W-/W+ charge asymmetry versus y. (also extract dσW/dy distributions so one can measure σZ(y)/σW(y) versus y.
- Implications of W Asymmetry measured at CDF to the LHC, PDFs and Deep Inelastic scattering.

- 1. At the LHC W asymmetry versus y yields the <u>absolute</u> value of d/u at small x.
- 2. At the Tevatron the W asymmetry versus y yields the ratio of d/u at large x1 to d/u at small x2.
- 3. The Z/W ratio versus y yields information on the <u>strange</u> <u>quark sea at small</u> x.
- 4. The above three pieces of information combined constrain PDFs so that we can use W and Z events as *luminosity candles*.

pbar-p at the Tevatron

For pbar -p Tevatron

W-/W+ = ratio [d/u(x1)at larger x1 / d/u (x2) at smaller x2]

W-= Cos2 [d(x1) u(x2)+ ubar(x1) dbar(x2) +s(x1) c(x2) +cbar(x1) sbar(x2)] W-= Sin2 [d(x1) c(x2)+ ubar(x1) sbar(x2) +s(x1) u(x2) +cbar(x1) dbar(x2)] W+ =Cos2 [u(x1)d(x2)+ dbar(x1)ubar(x2) + c(x1)s(x2) + sbar(x1)cbar(x2)] W+ =SIn2 [u(x1)sx2)+dbar(x1)cbar(x2) + c(x1)d(x2) +sbar(x1)ubar(x2)]

$$egin{aligned} A(y_W) &pprox rac{u(x_1)d(x_2) - u(x_2)d(x_1)}{u(x_1)d(x_2) + u(x_2)d(x_1)} \ &\equiv rac{d(x_2)/u(x_2) - d(x_1)/u(x_1)}{d(x_2)/u(x_2) + d(x_1)/u(x_1)}. \end{aligned}$$

In terms of Cos2 and sin2 of Cabbibo angle

$$\frac{W}{W+} \approx \frac{d(x_1)/u(x_1)}{d(x_2)/u(x_2)}.$$

Note **x1** range at the Tevatron overlaps **x** range of muon deep inelastic scattering data on hydrogen and deuterium

For p-p LHC

W-/W+ = absolute value of d/u(x) at small x

 $W_{-} = 0.949 \left[\mathbf{d}(\mathbf{x1}) \underline{\mathbf{u}}(\mathbf{x2}) + \underline{\mathbf{u}}(\mathbf{x1}) \mathbf{d}(\mathbf{x2}) + \mathbf{s}(\mathbf{x1}) \underline{\mathbf{c}}(\mathbf{x2}) + \underline{\mathbf{c}}(\mathbf{x1}) \mathbf{s}(\mathbf{x2}) \right] \\ + 0.051 \left[\mathbf{d}(\mathbf{x1}) \underline{\mathbf{c}}(\mathbf{x2}) + \underline{\mathbf{u}}(\mathbf{x1}) \mathbf{s}(\mathbf{x2}) + \mathbf{s}(\mathbf{x1}) \mathbf{u}(\mathbf{x2}) + \underline{\mathbf{c}}(\mathbf{x1}) \mathbf{d}(\mathbf{x2}) \right] \\ W_{+} = 0.949 \left[\mathbf{u}(\mathbf{x1}) \underline{\mathbf{d}}(\mathbf{x2}) + \underline{\mathbf{d}}(\mathbf{x1}) \mathbf{u}(\mathbf{x2}) + \mathbf{c}(\mathbf{x1}) \underline{\mathbf{s}}(\mathbf{x2}) + \underline{\mathbf{s}}(\mathbf{x1}) \mathbf{c}(\mathbf{x2}) \right] \\ + 0.051 \left[\mathbf{u}(\mathbf{x1}) \underline{\mathbf{s}}(\mathbf{x2}) + \underline{\mathbf{d}}(\mathbf{x1}) \mathbf{c}(\mathbf{x2}) + \mathbf{c}(\mathbf{x1}) \underline{\mathbf{d}}(\mathbf{x2}) + \underline{\mathbf{s}}(\mathbf{x1}) \mathbf{u}(\mathbf{x2}) \right] \\ \text{In terms of Cos2 and sin2 of Cabbibo angle}$

For most of the region, $\underline{d}(x) = \underline{u}(x) = \underline{q}(x)$

 $[d(x1) + d(x2)* \underline{q}(x1)/\underline{q}(x2)]$

W-/W+=

[u(x1) + u(x2)*q(x1)/q(x2)]

Note: X1 at the LHC overlaps range of X2 at the Tevatron

At small y: x1=x2 q(x1)/q(x2) = 1 $W-/W+ = \sim [d/u (x1) + d/u (x2)]*0.5$ At larger y: q(x1)/q(x2) << 1 since x1 is large and x2 is small $W-/W+ = \sim d/u (x1)$

Parton Distribution Functions 2 xf(x,q²) u_{val}(x) : MRST2006NNLO 1.8 d_{val}(x) : MRST2006NNLO 1.6 u_{sea}(x) : MRST2006NNLO d_{sea}(x) : MRST2006NNLO 1.4 gluon(x) : MRST2006NNLO 1.2 uv+usea LHC x2 LHC x1 DIS 0.8 Tevatron x1 Tevatron x2 0.6 0.4 dv+dsea 0.2 0 **10**⁻⁴ 10⁻³ 10⁻² **10**⁻¹ Х d/u(x=0) ~1 d/u (x=1) ~0

7

High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO. C. Anastasiou, L. J. Dixon, K. Melnikov, . Petriello. Phys.Rev.D69:094008,2004.

Unfolding W Charge Asymmetry at the Tevatron u quark carries more momentum than d quark

Unfolding the W Charge Asymmetry at CDF

New analysis technique to measure the W production charge asymmetry at the *Fermilab Tevatron*" A. Bodek, Y-S Chung, B-Y Han, K. McFarland , E. Halkiadakis, *Phys. Rev. D* 77, 111301(*R*) (2008) ; *B.Y. Han (Rochester- CDF PhD 2008)- update Aug. 6.08*

The larger the lepton Et, the closer is the lepton Asymmetry to the W asymmetry

Unfolding the W Charge Asymmetry -

use all the information (Et, MET, eta) in each event There are only 2 y_w solutions for each event..

Analysis method: Number of W[±] vs y_W

- Use ME_T for P_v : missing P_z !
- Use M_W constraint to get 2 possible y_W solutions
 - Weight each of them depending on:

CDF 1 fm-1- W charge Asymmetry extracted from W decay lepton asymmetry (BY Han PhD Rochester-CDF 2008) updated

Note, I have corrected the CDF data to W=80.4 GeV

Note, I have corrected the CDF data to W=80.4 GeV for <Yw> each bin. So <u>this is my own analysis</u>. The official CDF data shown below is given for a different <Mw> for each y bin (because of the Et and MET cuts and detector acceptance.) One alternatively can calculate the theory prediction for <yw> and <Mw> in each bin and leave the CDF data as below.

$ y_W $	CDF data		CTEQ6.1M (CTEQ5L)				
	$< y_W >$	$A(y_W) \pm \sigma$	$< y_W >$	$< M_W >$	$A(y_W)$	$\frac{A_{data}}{A_{mc}}$	
0.0 - 0.2	0.10	0.020 ± 0.003	0.10 (0.10)	81.04 (81.04)	0.014 (0.016)	1.42 (1.22)	
0.2 - 0.4	0.30	0.057 ± 0.004	0.30 (0.30)	81.27 (81.27)	0.046 (0.050)	1.25 (1.15)	
0.4 - 0.6	0.50	0.081 ± 0.005	0.50 (0.50)	81.37 (81.37)	0.084 (0.085)	0.96 (0.96)	
0.6 - 0.8	0.70	0.117 ± 0.006	0.70 (0.70)	81.33 (81.33)	0.118 (0.120)	0.99 (0.97)	
0.8 - 1.0	0.90	0.146 ± 0.008	0.90 (0.90)	81.13 (81.14)	0.157 (0.158)	0.93 (0.92)	
1.0 - 1.2	1.10	0.204 ± 0.009	1.10 (1.10)	80.63 (80.63)	0.196 (0.196)	1.04 (1.04)	
1.2 - 1.4	1.30	0.235 ± 0.012	1.30 (1.30)	80.92 (80.92)	0.240 (0.238)	0.98 (0.99)	
1.4 - 1.6	1.50	0.261 ± 0.015	1.49 (1.50)	80.91 (80.92)	0.282 (0.283)	0.93 (0.92)	
1.6 - 1.8	1.70	0.303 ± 0.014	1.70 (1.70)	80.79 (80.79)	0.330 (0.335)	0.92 (0.90)	
1.8 - 2.05	1.92	0.355 ± 0.014	1.91 (1.92)	80.54 (80.55)	0.387 (0.389)	0.92 (0.91)	
2.05 - 2.3	2.16	0.436 ± 0.016	2.16 (2.16)	80.09 (80.10)	0.456 (0.456)	0.96 (0.96)	
2.3 - 2.6	2.42	0.537 ± 0.018	2.42 (2.42)	79.49 (79.49)	0.545 (0.536)	0.99 (1.00)	
2.6 - 3.0	2.72	$0.642 \ {\pm} 0.026$	2.71 (2.71)	78.70 (78.65)	0.650 (0.623)	0.99 (1.03)	

The recent Dzero "lepton" asymmetry implies <u>an even lower</u> <u>W Asymmetry</u> and a <u>larger difference from MRST2006nnlo</u> <u>than implied by the CDF data</u> (plot from Thorne).

5. If we tune to Dzero "lepton" asymmetry data, we need much more tuning

Figure 1. Existing data for the EMC effect for nuclei near Fe [1, 2], along with two calculations by Benhar, Pandharipande and Sick [3]. The solid line is their binding-only calculation, while the dotted line includes their calculation of the contribution from nuclear pions. 18

How different is d/u in CTEQ6.1M nuclear from CTEQ6.1M, from MRST06 - And what change in d/u(x1) is needed to fit CDF data.

Tuning PDFs to fit W-/W+ data at the Tevatron

- The W-asym data are very precise -more sensitive to d/u than F2d/F2p
- We can change the PDFs to fit the CDF data, but have a choice between changing d/u(x1) within the uncertainties of the DIS data, or changing d/u(x2) (keeping all other PDFs the same). Dzero data require a larger change.
- There are no precise measurements of d/u(x2) at small x. DIS and Drell-Yan data on Deuterium vs are used (but what about shadowing corrections?)
- PDFs assume a functional form constrained by (Regge x->0, d/u->1), (quark counting d/u->0 as x->1), number sum rules (~1 d_{valence} and ~ 2_{uvalence} with QCD) corrections to determine d_{valence}.
- LHC W-/W+ directly measure d/u at small x
- Combined LHC and CDF data constrain d/u & are not sensitive to nuclear&shadowing corr.

Fixing MRST2006nnlo by either changing d/u(x2) - updated

CDF data for d/u (x2) assuming MRST06NNLO d/u(x1) and CDF data for d/u (x1) assuming MRST06NNLO d/u(x2)

Compare d/u and 2s/(all sea) for several PDFs

For y=0 at 14 TeV (W production)

y=0	0.005743 x			only	Q2
d/u	2s/(all sea)			d/u Asym	
0.927288	0.845418	CTEQ6.1M		0.0377277	6400
0.940283	0.970942	CTEQ6.6M		0.0307776	6400
0.939349	0.858893	MRST2006N	INLO	0.031274	6400
0.934616	0.857605	MRST2004N	ILO	0.033797	6400
0.933419	0.799886	ZEUS2005-2	ZJ	0.0344372	6400
0.936695	0.839626	MRST2004F	4L0	0.0326873	6400
0.924448	0.683733	GRV98LO	no-c or b	0.0392593	6400
0.881951	0.778952	GRV94LO	no-c or b	0.062727	6400
0.898151	0.690727	ALEKHIN02	NNLO	0.0536568	6400

W-/W+ : CTEQ6.1M simple formula vs full calculation. cteq6.1M : d/u (y=0, x=0.0056) ~ 0.93 (other pdfs 0.92-0.94)

W Asym - conclusions

- New technique to unfold W-lepton eta distribution and extract the W+rapidity distributions allows measurements of W-/W+ (y) at the CDF and LHC.
- It will take some work to adapt the procedure from CDF to CMS.
- d/u(x1) at LHC may be less well known than assumed in current PDF fits. Current PDFs have d/y (y=0, x=0.0056) varying from 0.92 to 0.94. However, It is possible that 0.84 < d/u (y=0, x=0.0056) <0.96.
- A combined analysis of CDF and CMS W-/W+ data versus y yields d/u(x) over a wide range of x1,x2, independent of nuclear and shadowing corrections in the deuteron.
- Consistency requirements between LHC/CDF data on d/u(x) and DIS and Drell Yan data on hydrogen and deuterium is *useful in testing models of nuclear effects and shadowing corrections in deuterium and heavy nuclei.*(evolve down to lower Q2). Better understanding of nuclear corrections in D2 would make existing muon, neutrino DIS and Drell-Yan data on H, D and nuclear targets more useful in global PDF analyses (e.g. smaller errors on u+d).

Unfolding W y distributions also yields: $\sigma z/\sigma w(y)$ which is sensitive to strange and bottom sea.

Zu =0.37 [u(x1)*ubar(x2) + ubar(x1) u(x2)+c(x1) cbar(x2) +cbar(x1)c(x2)] Zd =0.54 [d(x1)*dbar(x2) + dbar(x1) d(x2) +s(x1) sbar(x2) +sbar(x1) s(x2)+b(x1) bbar(x2) +bbar(x1) b(x2)

Sbar starts 0.4 SU3 symmetric at low Q2 and becomes almost SU3 symmetric but not quite at LHC

CTEQ6.1M 3.50E+00 3.00E+00 2.50E+00 ubar 2.00E+00 dbar 1.50E+00 sbar 1.00E+00 5.00E-01 0.00E+00 0.00E+001.00E-02 2.00E-02 3.00E-02 4.00E-02 5.00E-02 6.00E-02

 $\frac{d\sigma(Z)}{dy} \propto 0.37 u(x_1) \bar{u}(x_2) + 0.54 d(x_1) \bar{d}(x_2)$

Y

Unfolding W y distributions also yields: $\sigma z/\sigma w(y)$ which is sensitive to strange and bottom sea.

 $\frac{d\sigma(Z)}{du} \propto 0.37 u(x_1) \bar{u}(x_2) + 0.54 d(x_1) \bar{d}(x_2)$

Zu =0.37 [u(x1)*ubar(x2) + ubar(x1) u(x2)+c(x1) cbar(x2) +cbar(x1)c(x2)] Zd =0.54 [d(x1)*dbar(x2) + dbar(x1) d(x2) +s(x1) sbar(x2) +sbar(x1) s(x2)+b(x1) bbar(x2) +bbar(x1) b(x2)

> Z/W simple formula (PDF terms only) compare CTEQ6.1 strange sea with SU3 symmetric strange sea

38

- New technique to unfold W-lepton eta distribution and extract the W+- rapidity distributions allows measurements of W-/W+ and W/Z versus y at the CDF and LHC.
- Some information on the strange sea at large x has been measured in DIS neutrino charm production (dimuon events), and W+charm at the Tevatron. However, no data exist for the strange sea at very small x.
- W/Z data at the LHC provide new information on strange sea at very small x.
- The u distributions are better known (e.g. HERA e-p data) than the d,s quarks.
- W-/W+ and Z/W data constrain (d,s) PDFs so that we can use W and Z events as luminosity candles at the LHC.