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Abstract. The cross sections of neutrino and antineu- 
trino quasielastic reactions v n ~ /2- p, ~p ~ /2 + n, ~p 

/2 +A were studied in the neutrino energy range be- 
tween 3 and 30 GeV. In comparison with V - A  

theory axial mass parameters of MA=(1.06_0.05 
___0.14) GeV/c 2 from neutrino and Ma=(0.71 
+ 0.10___ 0.20) GeV/c 2 from antineutrino data were 
found. The total cross-section for the hyperon pro- 
duction process can be described by MA = 1.0 GeV/c 2. 

1 Introduction 

In this paper we study the quasielastic reactions 

vn--* / 2 - p  (1) 

and 

~p --*/2 + n. (2) 

These reactions have been studied mainly in the 
low neutrino energy region up to 5 GeV [1 17]. We 
overlap with this region and give information for re- 
actions (1) and (2) up to neutrino energies of 30 GeV. 
We have previously published an investigation of 
these reactions using the first part of our data sample 
[18]. 

For the quasielastic hyperonproduction 

fp ~/2+A, (3) 

there are only three published results [19-21]. 

* Now at JINR, Dubna, USSR 

The experimental procedure and the event selec- 
tion are described in Sect. 2, the experimental cross 
section calculations are discussed in Sect. 3, the results 
are compared in Sect. 4 with predictions of the V - A  
theory to give an estimate of the axial form factor 
mass MA. 

In the following informations about antineutrino 
data will be given in brackets. 

2 Experimental procedure 

The data were obtained in an experiment using the 
bubble chamber SKAT filled with heavy freon 
(CF3Br) exposed to the v (~)-wide-band beam of the 
Serpukhov proton synchrotron. The (anti)neutrino 
energy spectrum ranges between 3 and 30 GeV, the 
mean event energy is about 9 GeV. 

The volume of the chamber is 6.5 m 3, the chosen 
fiducial volume is 1.7 m 3. 

Our analysis is based on final samples of 15 060 
(2150) charged current events. These samples are used 
for the cross section normalization of the quasielastic 
event samples. A charged current event is demanded 
to have at least one negative (positive) noninteracting 
leaving track - the muon. To remove background 
due to incoming neutral hadrons two cuts were im- 
posed on this sample: The sum of all longitudinal 
momenta has to be greater than zero and the muon 
momentum has to be greater than 0.5 (1.0)GeV/c. 
This reduces our sample to 14 560 (1910) charged cur- 
rent events; the (anti)neutrino energy of 13 590 (1730) 
events was greater 3 GeV. 
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We have in our heavy liquid to tackle events with 
stubs, i.e. low energetic nucleon tracks. These slow 
nucleons with kinetic energies T < 3 0  MeV (mainly 
stopping protons) are assumed to originate from nu- 
clear evaporation of the nucleus - they were not con- 
sidered in our data selection. 

For  the analysis we reject events where interacting 
tracks have a momentum error greater 60% and cor- 
rect this loss with a subsequent weighting procedure 
[22]. The average event weight for our sample is 1.11. 

540 events with a negative muon and one stopping 
proton were selected as candidates for the quasielastic 
reaction (1). For  reaction (2) we selected 159 events 
with a positive muon and neither a charged hadron 
nor  a gamma. For  reaction (3) we observe 3 events 
where the muon is accompanied by a lambda with 
the decay A ~ p n- .  

To calculate the neutrino energy E~ for reaction 
(1) and the antineutrino energy E~ for (3) we use the 
visible energies of muon and baryon. E~ for reaction 
(2) was determined as the sum of the energy of the 
muon and the kinetic energy of the neutron (calculat- 
ed from four-momentum balance of the reaction 
under the hypothesis of an interaction on free proton). 
This method one has to introduce because only 13% 
of the events have a visible fast neutron inside the 
chamber volume. It was checked with neutrino events 
where we omitted the identified proton. The proce- 
dure introduces an error below 5% on E~. 

The four-momentum-transfer was calculated with 
E~, E u and p~ (the energy and longitudinal momen- 
tum of the muon) as Qz = 2. E~. (E u-p~). 

3 Experimental cross sections 

The main sources of background and losses in the 
investigated reactions are: 

- scan inefficiency 
- the topology modification due to intranuclear 
hadron cascading 
- chamber inefficiency such as invisibility of neutral 
hadrons or the simulation of muons by noninteract- 
ing charged pions in neutral current interactions. 

The scanning losses are small in the event sample 
for (1) (3.7%) but important  in the antineutrino reac- 
tion (2) (13.6%). 

To obtain the number of corrected, i.e. truly pro- 
duced quasielastic events NqP~ ~ from the number of 
observed events N ~ we use 

N~ = Bqu" UqPu ~~ + ebg" N~,g ~ (4) 

where N~g ~ is the primary produced background and 
the probabilities e are described below. 

For  reactions (1) and (2) the background is domi- 
nated by events from single pion production channels 
with primary hadronic final states pn  +, pn ~ nn + 
(nn-,pn-,  nn~ For  the Nn-product ion cross-sec- 
tions we use the information from the quark model 
described in [23], these reactions and the applicability 
of this model we investigated previously [24]. The 
event numbers N ~  ~ are calculated normalizing these 
cross-sections on the total charged current cross-sec- 
tions measured in our experiment [25]. 

equ and ebg are the probabilities for primary qua- 
sielastic and background events to be observed as 
a quasielastic event with the above mentioned criteria. 
We obtain them with a Monte Carlo program [22] 
taking into account effects of the nuclei (Fermi mo- 
tion, Pauli principle and hadron rescattering) and ex- 
perimental properties of the bubble chamber. The cal- 
culation also includes the energy determination meth- 
od and the smearing between chosen bins of variables. 
~qu is in the order of 0.30 (0.70), ebg is smaller 0.01. 

Applying all described corrections for the quasie- 
lastic signal we observe 1465.9+_199.6 neutrino re- 
spectively 256.7 + 51.2 antineutrino events. The corre- 
sponding cross-section was derived by scaling the 
number of events on the total cross-section [25]. Fig- 
ure 1 shows the total quasielastic cross-section a(E) 
and the differential cross-section on the momentum 
transfer da/dQ 2 for neutrinos. The corresponding 
antineutrino cross-sections are shown in Fig. 2. One 
observes an energy independence of a(E) and a steep 
decrease of da/dQ 2. 

For reaction (3) we correct the number of ob- 
served events on losses in the bubble chamber; we 
neglect losses and backgrounds (ebg = 0) due to intra- 
nuclear inelastic reactions. The correction factor for 
the visibility of A-particles equ=0.40 we take from 
the investigation of neutral strange particle produc- 
tion in SKAT [26]. It includes losses from the fitting 
procedure, A-interaction inside the chamber, geomet- 
rical acceptance and branching ratio in p n - .  We cal- 
culate the cross-section normalizing the number of 
events on total charged current cross-section. The 
cross-section is shown together with the results from 
other experiments in Fig. 3. 

4 Comparison with theory 

Our results have to be compared with predictions 
of the V - A  based theory. The cross-section for the 
quasielastic process can be written as [-27] 

da G2"M2"cos2@)c( 2 
dQ2= ~ y ~  ~A(Q ) 

T- ( Q ) ( : ~ ) + C  2 s - u 2  (5) 



The upper sign yields for the neutrino, the lower for 
the antineutrino-reaction. G is the weak interaction 
coupling constant, E the neutrino energy, M the nuc- 
leon mass and Oc the Cabbibo angle, s, u and t = - Q 2  

are the Mandelstam variables and the structure func- 
tions A, B and C are functions of Q2 and the form 
factors F1, F2 and F a. The isovector form factors F/ 
(i = 1, 2) are adequately represented by the dipole form 
of the related electric and magnetic form factors of 
protons and neutrons [27] Fi=FiP(QZ)-FI"(Q 2) with 
a vector mass parameter of M v = 0.84 GeV [28]. We 
assume the dipole form also for the axial-vector form 
factor 

FA (Q2) = FA (0)/(1 + Q 2 / M ] ) 2 .  (6) 

Alternatively we try a quark model vector-dominance 
motivated parametrization [29] 

FA (Q2) = FA (0)/(1 + Q2/M2) 

�9 exp ( - Q 2 R z/6 (1 + q 2/4 M2)) (7) 

with R 2 = 6  GeV -2. The value of FA(0)=--1.254 is 
taken from neutron decay [30] - it is essentially the 
ratio of vector to axial vector coupling strength. The 
axial-vector m a s s  M a is  the only unknown parameter. 

For  the Cabibbo suppressed reaction (3) the cross- 
section functions A, B and C are modified in compari- 
son to the case of reactions (1) and (2) because the 
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mass difference of the initial and final state baryons 
becomes important�9 The weak current form faktors 
F~ (i= i, 2) are given with the electromagnetic form 
factors of protons [27] Fi(Q2)=FIV(Q2)�9 

The dipole parametrization (6) also holds in this 
case with normalization from A-decay FA (0)= --0.694 
[ 30 ] .  

For  the estimation of M a we use the experimental 
total cross-section a(E) and the differential cross-sec- 
tion da/dQ 2. We compare them with integrals of the 
theoretical differential cross-section (da/dQ2(E))theor 
(5) 

"d 2 [ d 6 \  

dQZ - IdE~(E ) 

(E) is the neutrino energy distribution�9 We perform 
a Z2-fit to extract from our four experimental distribu- 
tions the free parameter MA. The results for the neu- 
trino cross-sections are M A=(1.O8 ++_O.O7) GeV/c 2 
from tr(E) and MA=(1.O5+_O�9 GeV/c 2 from 
dtr/dQ 2. Fitting both distributions together gives 
MA=(1.06_0.05) GeV/c z with a z2 /NDF of 7�9 
Antineutrino data give MA=(O.62+_O.16) GeV/c z 
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Fig. l a ,  b. Cross-section for vn ~ ,u-p. 
a Total cross-section a(E), (solid line: 
V--A with MA = 1.08 GeV/c 2) 
b Differential cross-section dtr/dQ 2 
(solid line: V - A  with 
M A = 1.05 GeV/c 2) 
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Fig. 2a, b. Cross-section for ~p ~ #+ n. 
a Total cross-section a(E) (solid line: 
V--A with MA=0.62 GeV/cZ). 
b Differential cross-section dtr/dQ 2 
(solid line: V -  A with 
MA = 0.79 GeV/c 2) 
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Fig. 3. Total cross-section (o) for 9p-~#+A, (• [19], (zx) [20], 
(0) [21]. Solid line: V-A-cross-section with MA = 1.0 GeV/c 2 

Table 1, Results of quasielastic neutrino scattering 

Experiment MA (GeV/c 2) Ref. Par. 

ANL streamer ch. 1.05 _+ 0.20 [ 1] 
12' BC D 2 1.00_+0.05 [2] 

BNL 7' BC D2 1.07-+ 0.06 [3] 
D2 1.10_+0.05 [4] 

PS BC Freon 1.00 +0.35 [5] 
- 0.20 

Propan 0.7 _+0.2 [6] 

Freon 0.75 + 0.24 [7] 
0.20 

Streamer ch. 0.65 + 0.45 [8] 
-0.40 

GGM Freon 0.88 _+ 0.19 [9] 
0.96_+0.16 

Propan 0.87-+0.05_+0.17 [10] 
0.99_+0.12 

U70 Spark ch. 1.00 _+ 0.04 [11] 
SKAT Freon 1.06_+0.05_+0.14 this exp. 

SPS BEBC D2 1.29_+0.09 [12] 

FNAL 15' BC Ne 1.08_+0.08 [13] 

D2 1.05 +012 [14] 
--0.16 

(6) 

ANL 12' BC D2 1.11 -t-0.16 [2] 

BNL 7' BC Dz 1.31 _+0.16 [3] 

U70 SKAT Freon 1.22 _+ 0.14 this exp. 

(7) 

Table 2. Results of quasielastic antineutrino scattering 

Experiment Ma (GeV/c 2) Ref. 

+0.4 
BNL 7' BC H 2 0.9 [15] 

--0.3 

PS GGM Freon 0.69_+ 0.44 [9] 
0.94_+0.17 

U70 Spark ch. 1.04_+ 0.04 [11] 
SKAT Freon 0.71 -+ 0.10 + 0.20 this exp. 

SPS GGM Propan 0.91 _+ 0.40 [16] 

FNAL 15' BC Ne 0.99_+0.11 [17] 

Table 3. Results of quasielastic A-production 

Experiment 4~ events MA (GeV/c 2) Ref. 

PS GGM Freon 13 - [19] 
Propan 15 + 45 0.86 + 0.19 [20] 

U70 SKAT 3 - this exp. 

FNAL 15' BC Ne 14 1.0 _+0.3 [21] 

f rom d~r/dQ 2 MA=(I.25+O.41) GeV/c  2 and  M v 
= (0.73_+ 0 .23)GeV/c  z with z Z / N D F  of  4.2/7 in g o o d  
ag reemen t  wi th  the results  above.  

A fit of the neu t r ino  d a t a  with the FA pa rame t r i za -  
t ion (7) yields M a  = (1.22_+ 0.14) GeV/c  2 with z 2 / N D F  
of 7.3/15. 

F o r  reac t ions  (1) and  (2) we show in Figs. 1 and  
2 cross-sec t ion  curves (solid lines) ca lcu la ted  with  the 
p a r a m e t e r s  f rom the c o r r e spond ing  fits with (6). In  
Tables  1 and  2 we c o m p a r e  our  results  for M A with 
those  of  o the r  exper iments  a n d  find consis tent  results  
for the neu t r ino  reac t ion  and  a s o m e w h a t  lower  value 
for the an t ineu t r ino  react ion.  Ave rag ing  all values  in 
Tables  1 and  2 one yields M A =(1.01 +0.02)  GeV/c  2 
for v- and  MA = (1.00 _+ 0.03) GeV/c  2 for 9-experi-  
ments .  

F o r  reac t ion  (3) one can find in Table  3 results  
f rom o the r  exper iments .  As  one can  see in Fig. 3 the 
cross-sec t ion  curve with  M A =  1.0 G e V / c  z descr ibes  
all d a t a  well. 

f rom a(E)  and  MA =(0.79_+ 0.11) GeV/c  2 f rom 
da/dQ 2, f i t t ing b o t h  d i s t r ibu t ions  toge the r  yields 
m A =(0.71 +0.10)  G e V / c  2 wi th  z 2 / N D F  of  15/12. As-  
suming  a 10% sys temat ic  e r ro r  on  the d a t a  (due to 
n o r m a l i z a t i o n  on to ta l  c ross-sec t ion  and  the nuc lear  
M o n t e  Car lo)  yields an  es t ima ted  sys temat ic  e r ro r  in 
M a of 0.14 G e V / c  2 and  0.20 GeV/c  2 in v- and  ~-inter- 
ac t ions  respectively.  

I f  one  fits in the  d ipo le  p a r a m e t r i z a t i o n  MA and  
M v  s imul t aneous ly  one yields e.g. in the neu t r ino  case 

5 S u m m a r y  

W e  s tud ied  quas ie las t ic  reac t ions  wi th  nucleons  and  
A - h y p e r o n s  induced  by  (ant i )neutr inos.  F r o m  540 (v) 
and  159 (~) cand ida tes  for the quas ie las t ic  nuc leon  
reac t ion  we de t e rmined  the to ta l  cross-sect ions  a(E) 
and  differential  cross-sect ions  da/dQ 2. W e  ext rac ted  
the axial  mass  p a r a m e t e r  for the V - A  pa ra me t r i z a -  
t ion using these cross sections. The  d ipo le  ansa tz  fit 
of  neu t r ino  cross-sect ions  yields MA = (1.06_+ 0.05 
+0.14)  GeV/c  2, f rom an t ineu t r ino  d a t a  we found  
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M d -- (0.71 _+ 0 .10_ 0.20) GeV/c 2. This has to be com- 
pared with world averages of M a = (1.01 
+ 0.02) GeV/c 2 (v) and MA = (1.00 _+ 0.03) GeV/c 2 (~). 
The cross-section for quasi-elastic hyperon produc- 
tion by antineutrinos can be described by MA 
= 1.0 GeV/c 2. 
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