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Abstract 

It is shown that the weighted geometrical mean is a more correct 

estimate of the mean of several quotients of two measured variables when 

the variables are normally distributed and have comparable errors. The 

case of Poisson statistics is discussed in detail, along with specific 

applications in electron scattering experiments. 
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The results of many experiments in physics are often presented in the 
form of derived quantities rather than in the form of the experimentally measured 
quantities. Therefore, it is not generally true that the distributions of the 
derived quantities are represented by the standard normal distribution. How- 

ever, in many cases one wishes to find the mean of several results extracted 
from several experiments, or to obtain a fit to the derived quantities as a 
function of some other physical variable. The standard procedure that is fol- 
lowed is to weight the data by inverse of the squares of the quoted standard 
deviations when taking the mean or performing a minimum chi-squared fit to 
the data. The above procedure is in general only correct when the distribution 

of the derived quantity can be well approximated by the standard normal distri- 
bution. When the normal distribution gives a poor representation of the true 
distribution, one must go back to the directly measured quantities and perform 
a maximum likelihood analysis on thr directly measured experimental data from 
the several experiments that one is trying to compare. This approach is often 
tedious because standard available computer programs cannot be used. In 
addition, the detailed information which is needed in order to perform such an 
analysis is in general not ava.ilable in all the experimental papers. However, if 
one can find a transformation that transforms the given, non-normal distribution 
into a distribution which is more nearly normal, then the averaging, or minimum 

&i-squared fitting, can be done on the transformed variables weighted by the in- 
verses of their errors, and a reverse transformation done at the end. Standard 

available computer programs can be used to fit the transformed variables. 
A common example is p = l/s, where s is L; measured quantity which is 

normally distributed. When we wish to find the mean of several determinations 
of p, or when we wish to fit the functional dependence of p on some other 
physical variable, it is best to fin.d the mean of s or the functional dependence 
of s, and then take the inverse. In general., 6, the arithmetic mean of p, will 
not be the inverse of s, the arithmetic mean of s; i;l = l/s will be the correct 

mean. 
We now investigate the distribution of the quotient of two Poisson distribu- 

ted quantities. As an example, we will work with the ratio z = CD/gH, 
where CD is the cross section for the scbattering of a projectile particle 

-I- 
t* , em, v , etc.) from a deuterium nucleus and CJH is the cross section for the 
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scattering of the particle from a hydrogen nucleus. Since cross sections are 

measured by counting the number of scattered particles, the measured cross 
sections are samples from Poisson distributions. If the cross section deter- 
minations are based on a number of scattered particles greater than a.bout 30, 
then the distributions are well approximated by normal distributions from which 
the negative tail portions have been truncated. Let us define the standard 
deviation of aD, aH , and z by SD, SH, and Sz respectively (in general 

S will denote a standard deviation); the mean of aD, aH, and z by D, H, and Z 
respectively (in general capital letters will denote a mean); and the fractional 
standard deviations 

AD = ‘D/D, AH = ‘H/H, and AZ = S z/Z 

(in general A will denote a fractional standard deviation). 
Using the standard rules for the propagation of errors we obtain the 

fractional error in z. 

A2 = $ + A; 
Z 

A =AUandAD=CA 

A; = A2 (1 + C2) 

(1) 

(2) 

Before we investigate the distribution of z in detail, we write down the 
expressions for obtaining the average of two measurements of z for three 

special cases. We use common sense arguments to obtain those expressions, 

but later we will show that they follow from the actual distribution of z. 
CaseAisthecaseofC > > 1, i.e., when the error in the hydrogen cross 

section in the denominator is much smaller than the error of the deuterium cross 
section in the numerator. We then expect the ratio z to be normally distributed 
because we are effectively dividing a normally distributed variable by a constant. 
In that case the average of two determinations of z is just the weighted arith- 
metic mean of the two values. 
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1 -= 1.1 
s2 s2 s2 2 2 

(3) 

(4) 

CaseBisthecaseofC << 1, i.e., when the error in the deuterium 
cross section in the numerator is much smaller than the error of the hydrogen 
cross section in the denominator. This is the inverse of case A and therefore we 
expect l/z to be normally distributed. In that case we should take the harmonic 
mean of z for two z determinations. 

1 -= (q)/ (Aqf + (‘/Z2) / (A2,z2)2 

2 
(Al/,$ + (a,/z2) 

(5) 

Remember that A denotes fractional error and not absolute error. 
Case C is the case of C = 1, i.e., when the fractional error in the 

hydrogen cross section is the same as the fractional error in the deuterium 
cross section. Because of this symmetry we expect our expression for obtain- 
ing the average of two z measurements to yield the same z whether we apply 

it to oD/uH = z or to cII/aD = l/z. The weighted geometrical mean has this 
nice quality 

In (Z) = 
ln “1/A; + ln Z2/A; 

I- 3 /A; 
(7) 

l/Z2 = l/A; I- l/A; (8) 
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The above expression is a result of the assumption that ln z is normally 
distributed when C = 1. 

We look now at the exact distribution for z and show that it indeed becomes 
normal in z for C > > 1, normal in l/Z for C < < 1, and normal in In z for 

c = 1. 
In the case when OH and OD are normally distributed, and OH is 

assumed to be practically always positive (this condition is satisfied in our case 
since the Poisson distribution is never negative) the distribution of the quotient 
becomes 1 

HS; - DS;z 

3/2 

From this distribution it follows that the variable Yp is normally distributed 

with zero mean and unit variance 1 . 

Y2 = (1 - z/Z) 2 
. 

P C2A I- A2(z/Z)2 ’ 
Z = D/H 

If z is normally distributed (Case A), then it follows that the variable YA 
is normally distributed with zero mean and unit variance. 

2 (1 - z/z> 
2 

YA = 
A2(C2 + 1) 

If l/z is normally distributed (Case B), then it follows that the variable YH 

is normally distributed with zero mean and unit variance. 

2 YH = (1 - z/z)2 

A2(C2 + 1) 

and if ln z is normally distributed (Case C), then it follows that the variable YC 
is normally distributed with zero mean and unit variance. 
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2 YG = (In z/Z)’ 
A2(C2 + 1) 

We now investigate the above four distributions near their means. Let z/Z = 
= 1 + A’ . We expand Yi, Yi , YL, 2 and Yi and keep terms to order 11’ . 

Expanding we get 

. . 
yi = A’2 

A2(C2 + 1) 
[1 - 2 Al + 4 - c2 - ’ Al2 . . . .] (Exact) 

c2 + 1 (C2 + 1)2 

Y; = Al2 
A2(C2 + 1) 

y2 AT2 
H = A2(C2 + 1) 

l- 2A’ f 3Af2 . . . . 1 
2 YG = Al2 

A2(C2 + 1) 
. . 1 

(Arithmetic) 

(Harmonic) 

(Geometric) 

We can see from the above expansions that for c > > 1, Y - YA, for c < < 1, 
Y -Y 2p 

P 
H. For c = 1, Y 

P 
- YG up to terms of order A7 /2. This means that 

when the fractional errors of the two variables in a quotient are the same, the 
resulting distribution of the ratio is well approximated by a distribution in which 
the logarithm of z is normally distributed. 

Note 

For C = 2, y2 2f 
P (Yi + Y&Z 

For C = l/2, y2’ z p (Yk + Y;)/2 

So as long as the l/2 AH < AD < 4 AH, the geometric mean of several determinations 

of z will provide a better estimate of z than the arithmetic mean of z or the 
harmonic mean of 2. In experiments designed to measure cD/oH, the error in 
oD/oH is minimized if the time is divided such as to make 

i.e., C4=-%. 

OD 
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(As long as other corrections to the cross sections are small and the beam con- 
ditions for each target and the number of nuclei in each target are the same). In 
general it is probably best to calculate the three different means and compare 

them. The geometrical mean will be the closest to the true mean as long as 

16 < +H < l/16 and the measurements of aD and oH are designed such as to 
minimize the error in aD/oH. 

In order to get an idea of how different the three means can be, we con- 
ducted a monte-carlo experiment. We assumed that aD/cH = 1 and the distri- 
bution of each was normal with unit mean and 0.033 standard deviation (corres- 
ponding to 900 counts). We sampled 1000 such ratios. We compare the three 
different means to the true mean which is the arithmetic mean of the 1000 deu- 
terium cross sections divided by the arithmetic mean of the 1000 hydrogen cross 

sections. The results are shown in Table 1. The geometrical mean is indeed 
the closest to the true mean. We also show results for other running conditions. 

In general, arithmetic mean < geometrical mean < harmonic mean, and the 
various means will differ by a fraction of about 2A2 where A is representative 
of the fractional error of the input data points. 

As mentioned earlier, the above analysis can also be applied when per- 
forming minimum chi-squared fits to the data. It can also be applied to results 
which are derived from ratios. For example, the neutron to proton cross section 

ratio is approximately ( cD/oH) - 1. Therefore, one must add 1 before taking 
the mean of the logarithm and subtract 1 at the end. Further study of the ratio 

distribution and applications of this analysis to specific problems can be found 
in Ref. 2. 

Our derivations were based on the assumption that H and D were normally 
distributed. Therefore, when we took the means of our 1000 “experiments” we 
weighted them equally. In the case of Poisson statistics when J-. N 1s taken as the 
error we may have the case that samples from the same distribution are not 

weighted equally. In that case it can be shown 2 that for C = 1 the geometric 
mean is still correct. However, for C > > 1 and for C < < 1 we should use the 

Poisson-arithmetic and Poisson-harmonic means respectively. 2 
C > > 1 poissonarithmetic: 

z = 
24/s; + Z”2/Sf 

z/s; + z2/s; 
(9) 
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Tz z1 
p=2 

1 

C < < 1 Poisson-harmonic: 

z2 +- 

% 

.- 
Z = 

= z2 

-q- 

(10) 

(11) 

(12) 
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TABLE 1 

Experimental Conditions Mean of 1000 f’Experimentsll 

H2 Counts D2 Counts C TlW? Arithmetic Geometric Harmonic 

900 900 1.0 0.9990 
f 0.0015 

900 90,000 0.1 0.9998 
*to. 0011 

900 3600 0.5 0.9994 
*to. 0012 

3600 900 2.0 0.9990 
rto. 0012 

90,000 900 10.0 0.9990 
*o. 0011 

0.9956 
f 0.0015 

0.9965 
* 0.0011 

0.9961 
f 0.0012 

0.9982 
* 0.0012 

0.9990 
f 0.0011 

0.9990 
f 0.0015 

0.9982 
*to. 0011 

0.9982 
-10.0012 

1.0002 
* 0.0012 

1.0006 
i- 0.0011 

1.0023 
*to. 0015 

0.9998 
-I 0.0011 

1.0006 
f 0.0012 

1.0023 
f 0.0012 

1.0023 
* 0,OOll 
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PART II : APPLICATIONS IN ELECTRON SCATTERING EXPERIMENTS 

A. More on the ratio distribution 

P(z), the distribution of the ratio z = bD/6H when C = 1 (i.e. 

equal fractional errors in the measured hydrogen and deuterium cross 

sections), is shown in figure 1. The percent deviations from P(z) of the 

standard normal distribution A(z) ( used for arithmetic means), of the 

function G(z), which the normal distribution of In(z) ( used for geometric 

means), and of the function H(z), which is the normal distribution of l/z 

(used for harmonic means), are shown in figure 2. We show the case of 

H = D = 1.00, B = D/H = 1.00, SH = SD = 0.033, Sz = 0.042 and 

4 = sp = 0.042 . As can be seen in figure 2, G(z) is an excellent 

approximation to the exact distribution P(z) for that case. 

H S; +DS;z 
(D-HZ)~ 

i?(z) = 
p5r cs; + Sf z2 )3'2 exp 2 ( s; + s; z2 ) 

3 

1 (z-2)2 
A(z) = 

J. 
exp 

2-n s b J 2s z 
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B. Poisson Distributions 

There are two common difficulties that are encountered when the 

determination of the mean of several experimentally determined 

quantities is required. 

1. The quantities are not normally distributed. 

2. The estimated standard deviations are poor estimates of the 

true standard deviations of the distributions. 

The ratio distribution represented an example of the first difficdty. 

The case of Poisson statistics can be considered as representative 

either of the first or of the second difficulty. We take the case where 

we want to combine two measurements of the cross section 6 . 

where N denotes the number of scattered particles detected and Q denotes 

the incident flux and other correction factors that convert N to a cross 

section ( we will call Q collectively the "charge"). 

We now use the maximum likelihood method' to find the best estimate 

for 6,&,and its error 46~ based on the results of the above two 

measurements. The best value is obtained by maximizing the likelihood J?. 

The above result is equivalent to weighting the measured cross sections 

by their corresponding charges, i.e. 



However, if we use the standard gaussian formula and weight the cross 
sections by the inverse of the square of their errors we get a different 

value a&'. 

In the special case Q, = Q, 

the two methods yield: 
rr": ,' 

3 Nl = N ( 1 +A' ) and N 
2 = ( 1 -A') 

68 = w/Q * ‘vlliil~ Poisson (correct) 

6; 'Z $(\-A'=) C i-%iS) 

l-32 
Gaussian (incorrect) 

On the average A 12 = l/N, so weighting the cross sections by the 

inverse of the square of their errors underestimates the mean by 

a fraction of about l/N. It is because cross sections based on small 

N are weighted more due to their small estimated errors. Even if we 

combine a large number of cross sections each based on about N counts 

we will find that the mean calculated using the gaussian formula will 

be incorrect and low by a fraction l/N. We combined the results of 

10,000 monte carlo experiments each measuring the same unit cross 

section on the basis of about 100 events. We weighted each experiment 

by its charge and obtained a mean of 1.0018 + 0.0010 . On the other 

hand, weighting each experiment by the square of the inverse of its 

statistical error yielded a mean of 0.9917 + 0.0010. For N = 100 we 

have l/N = l%, and the results of the gaussian combining is indeed 

1% low, which is 10 standard deviations low in this particular example. 

One way of understanding this difference is to realize that the 

standard gaussian formula requires that we weight each experiment by 

the inverse of the square of the true standard deviation. m/Q is a 

poor approximation to the true standard deviation unless N is 

close to N where N is the expected number of counts; Ne =6Q where e e 
6 is the exact value of the cross section. Therefore, the true 

standard deviation is J 6/~ . so weighting by the charge is equivalent 
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to weighting by a factor which is proportional to the square of the 

inverse of the true standard deviation. We may also take the point of 

view that the Poisson distribution is only approximately normal and 

requires special treatment, just like the distribution for the ratio. 

The correct mean can still be calculated even when the charge of 

each experiment is not given, when we realize that Q, = al/(ha,~z 

and N 1 = ~'QUJ? Thetfore, the correct mean for Poisson ditributed 

variables is ( we shall call it the Poisson-arithmetic mean), 

rs = cl 24q f G2/@urJ2 

q A&q2 + w@c~z 
and the correct error is 

the expression for the error can be rewritten as 

In most experimental situations, the final cross sections quoted have 

had several correction factors applied. Similarly, the quoted errors 

have been increased to account for the errors in the various correction 

factors. Common examples are empty targets subtractions, positron and 

other background subtractions, efficiency corrections, radiative corrections 

and other similar corrections. If the main error comes from counting 

statistics,then the above expression for the Poisson-arithmetic mean 

should still be used because it still accounts for the basic problem 

that small N lead to small errors and large N lead to large errors in 

runs for which the amount of charge is the same and'therefore the 

expected number of counts is the same. 

We now consider the problem of fitting the measured cross sections 

to a known functional form with undetermined coefficients. The standard 
2 procedure is to minimize 3( . Minimizirg 2' is equivalent to 

maximizing the likelihood only if the distributions are gaussian. 

Obtaining the mean of several cross sections is equivalent to a one 
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parameter fit. As we have shown, a different expression than the one 
derived from the 3' minimization must be used in the case of Poisson 

statistics. 

In the case of linear fits of more than one parameter the standard 

x2 gaussian formula leads to a set of linear equations. The fitting 

function Y is a linear sum of known functions Fi(Xa) with undetermined 

coefficients C i. We have P cross section measurements at P values of 

X a, and K coefficients Ci to be determined. 

XL, f I c-l. - 
, Y=i =b Fb (u,) 

&=I b=l 

We obtain the following set of K equations ( one for each Ci) by 

setting 3YZ = 0 . 
ac; 

e 

r 

ri& !iAAJ.k\j 
b:l 

CL=\ (A%\' 

The K equations in 2-l are the standard least squares fit equations. 

We shall now show that in the case of Poisson statistics a similar 

set of equations should be used,but unfortunately it is a set of non- 

linear equations. However, the non-linear equations can easily be 

solved by using the linear gaussian set of equations to obtain an 

initial solution and iterating (probably only once). 

Using Na = ‘52 /J (~q',~and Q 
6, 

= -- twe write the likelihood function oe 
a (Pa 

for the case of Poisson statistics. 

to maximize the likelihood we set z =o* 
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Substituting for Na and Q a we obtain a set of K non-linear equations 

( one 

2-2 

The set of equations in 2-2 is approximated by the set of equations in 2-l 

only when (y(xa>/6c3= 1 and can be set to 1.0 in the denominators of 

the equations in 2-2. Equation 2-2 can be solved by using the gaussian 2-l 

set of equations to obtain an initial solution for Y(X,) and iterate using 

the set of equations in 2-l again,but each time modifying the input errors 

by factors [m . This way, the standard least squares computer 

routines can still be used with only the input errors slightly modified. 

c. The ratio of two Poisson variables 

As we have shown in the previous section, the mean of several cross 

sections should be computed using the Poisson-arithmetic mean. In the 

case of several ratios of two Poisson variables we still use the 

geometric mean to find the mean of the ratios when C = 1 ( equal fractional 

errors in the quantities in the numerator and denominator). However, 

for ~>71 and for C cdl we should use the Poisson-arithmetic or the 

Poisson-harmonic means respectively. ( C was defined in part I as the 

ratio of the fractional errors of the quantities in the numerator and 

denominator). We provide a summary of the various means on the next page. 

In general all meanSwill be within the fraction + 2612 of each other, 

where A' is representative of the fractional error of the experiments 

that are being combined. 
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Summarizing 

C = 1 (Geometric mean) 

c7)1 (Poisson-Arithmetic mean) 

Cd<1 (Poisson-Harmonic mean) 

Arithmetic mean (hot to be used for Poisson distribut%ons) 

Harmonic mean (not to be used for Poisson distributions) 



D. The neutron to proton cross section ratio for deep-inelastic 

electron scattering. 

The neutron to proton cross section ratio is extracted from the ratio 

of hydrogen and deuterium cross sections. If we neglect deuteron corr:ctions 

then the ratio r is: r = dn/ 6p = 6,/ 6H - 1.0 

Now In (6~/6H ) is approximately normally distributed. This is because 

1.4 &D/6H (2 (Ref. 2). In experiments designed to minimize the error 

in 6D/6H the running times will be planned such,as to make 1.4 SC2 g 2 . 

This is well within the re 'on 
s&fj~ h LO<. G"j here the geometric mean is applicable. 

All averaging and fitting,&--*-in ( ri + 1) and Ayi = Ari, ( ri + 1 ). 
.-b 

If we wish to fit ri tor=a+bx+cxL, we should use a non linear 

fitting program, input arrays of yi, dyi and xi and Yfit = In (a +bx +cx2+l), 

where a,b,c are to be determined. 

The mean can be wrong by as much as 2~'~ where A' is the fractional 

error of the individual CD/ dH ratios to be combined. Therefore, taking 

the wrong mean can lead to a large systematic, error in the case where 

many measurements of poor statistics are to be averaged. When bD/aHz 1.4, 

averagink several determinations of the ratio r when the determinations 

are obtained from 6D/gH measurements with errors of 10% can result 

in an error of 0.028 if the arithmetic mean is used instead of the 

geometrical mean. This is important ;.f enough runs are combined such as to 

make the combined error comparable to this number. It is clear that when 

only two or three runs are combined the systematic shift will be small 

in comparison to the resulting statistical errors. 

E. The ratio of scalar to transverse virtual photoabsorption cross sections. 

The electroproduction cross sections can be written in terms of cross 

sections f:)r absorption of scalar and transverce virtual photons 6s and dt. 
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For electrons of incident E, scattering angle 0 , and scattered energy E' 

the cross section can be written as 

I 
d-‘,c tg c\ t?z= 

where M is the nucleon mass. 

r is the virtual photon flux azsd e is the polarization of the virtual photon. 

The quantity R = ds/ bt is of current theoretical interest. R is extracted 

from two or more cross section measurements at different values of ~(0) and 

fixed values of W and q2. We take as an example the case of two cross sections. 

NOW R is usually a small quantity ( It's average value is about 0.16, Ref. 3) 

So we expand the above expression, 

Usually, the C difference AC= &,-&a is about 0.35 (Ref.3). Also,.fll is 

usually measured more accurately since the cross sections at the small angles 

( large 4S ) are larger. Typically, the ratio of the errors of 61 to the errors 
in g2 is about l/2. This mean that the situation is somewhere close to 

half way between the case where In ( 1 + 0.35 R ) is gaussian distributed and 

the case where l/( 1 + 0.35 R ) is gaussian. It is clear that in no case do we 

have the situation where the distribution of R itself is approximated ky a 

gaussian. It is clear now that all least square fits ought to be done on 

the variable In ( 1 + 0.35 R ) to reduce systematic errors. 
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