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Initial quark mass m | and final mass ,m.=m " bound in a proton of mass
M -- Summary: INCLUDE quark initial Pt) Get & scaling (not x=Q2%/2Mv)

, S 9=93,90
& Is the correct variable which is E  popopim B P.= P0,P.3 M =m’
Invariant in any frame : g3 and P
. . . . P= PO + P3,M
in opposite directions.
PI,PO q3,q90
- P’ +P’ quark photon
P, +P, Special cases:

Numerator m . ?: Slow
Rescaling § as in charm

(q+P) =P —q +2P-q+ P} =m.

production
*+m? Denominator: Target mass
£ * Pt=0
§ = NG Jorm; ,Pt=0 effect, e.g. Nachtman Variable
M1+ J (1+Q°/v7)] E, Light Cone Variable &,
Georgi Politzer Target Mass §

Most General Case:
IS [Q’2+B]/ [ Mv (1+(1+Q?/v?) ) 72 +A]

where 2Q2=[Qz+ m - 2-m 2]+ [(Q%m - 2-m ,2) 2+ 4Q2 (m 2 +P?%t) ]2
For the case of Pt2=0 see R. Barbieri et al Phys. Lett. 64B, 1717 (1976) and Nucl. Phys. B117, 50 (1976)

Add B and A to account for effects of additional A m? from NLO and NNLO
(up to infinite order) QCD effects.



Initial quark mass m | and final mass ,m.=m " bound in a proton of mass
M -- Page 1 INCLUDE quark initial Pt) Get & scaling (not x=Q%2Mv) DETAILS

& Is the correct variable which is

Invariant in any frame : g3 and P

in opposite directions.
PI, PO q3,q0

6 P +pP’ quark photon
P, +P;
In-LAB-Frame :— P)=M,P) =0
P ,+P
§ =~ Py + Pl =EM
2 2
LB E)E o) (7)) -(7)
M(PIO_PI3) M(PIO_I_)13)

EM(P) - P’)=(m; +Pt)

—P) - P’ =(m; + P’)/(EM)

(): P’=P’=(m;+ Pr')/(EM)

2): P+ P =EM

2P° =EM + (m} + Pt*) (EM ) —"-"——EM
2P =EM - (m; + Pt*)/(EM)—-"——EM

q=93,90

-— 0 3 — *
S P|:= P|O,P|3;mNPF ,PF ,M=M

2 2P=PO+I2D3’M 2 2
(q+P1) =P, —q +2P7q+F =m;

2(P10q0+P13q3)=Q2+m}%_m[2 Q2=_q2=(q3)2_(q0)2
In- LAB - Frame : — Q'=-¢=(q) -V
[EM +(m} + PE)/(EM)Iv +[EM - (m] + PE)/(EM)]q’

2 2 2
=0 +m, -m, :General

Set:m;,Pt=0  (for now)
Mv +EMq’ = 0 + m;

Q2 +m§ Q2+ mi 5

= —= - form;,Pt=0
Mv+q) Mv(l+q/v)

= Ll form; ,Pt=0
MV{1+(1+0% V%)

Special cases : Denom — TM term, Num - Slow rescaling
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initial quark mass m | and final mass m_=m" bound in a proton of mass
M -- Page 2 INCLUDE quark initial Pt) DETAILS

~q=q ) P=POP3m =m*
P.=P2,P3,m F= TR TR
& For the case of non zero m;,P, S o /‘1’\

(note P and g3 are opposite) P=P +PM
PI,PO 43,40 (q+P,)2=P; %q2+2PI°q+ PIz=m}2D
_ P’ +P’ quark photon
P+ P’ Q2=‘CI2 =(q3)2‘V2
e e (M POEM)Iv 4191~ () + PP

(): 2P’ =EM + (m] + Pt) /(EM) ————
(D): 2P =EM —(m} + PP)/(EM) ———— = Q2 + mﬁ _ m?

Keep all terms here and : multiply by E M and group terms in & qnd & 2

E2M2(v+q3) -E M[Q?**+ m 2-m 2] +[m ?+Pt?(v-q3)2]=0 General Equation
a b C

=> solution of quadratic equation & =[-b +(b?-4ac) 2]/ 2a

use (v2-q32)=q2=-Q2 and (v+a3)=v+v[1+Q2/v2]"2= viv[1+4M2x2/Q2]12
£ [Q2+B]/ [ Mv (1+(1+Q?%/v3) ) V2 +A]

where 2Q2=[Q2+ m - 2-m 2]+ [(Q%m - 2-m ;2) 2+ 4Q? (m 2 +P?t) ]2

Add B and A to account for effects of additional A m? from NLO and NNLO effects.

or 2Q2=[Q2+ m 2-m 2] + [Q*+2Q%m 2+m 2+2P%)+ (m 2-m 2)2] 2
[Q2+B] / [Mv (1+[1+4M?x?Q 2]"2) +A] (equivalent form)
x [2Q’2+ 2B] | [QZ% + (Q* +4x2 M2 Q?2) 12 +2Ax ] (equivalent form)
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Very low Q2: Revenge of the Spectator Quarks
F2(elastic) versus Q2 (GeV2)

[ust like in p-p scattering
here is a strong
“onnection between
r]lastic and inelastic
scattering (Optical
[heorem).

F2 (elastic)
proton

08 |

0.6 [

1 r,a P £~ —

0.4

Quantum Mechanics
(Closure) requires a
strong connection
|
i

D B 1 1 ||||||| 1 1 1 |||||| |||| ||||
. —
10 1672 107 1 10

(1.0+2.7928++24x,/3.5192) /(1. 4x/3.5192) /{1 +:/0.71 x4

007 B

between elastic and

inelastic scattering.

Although spectator

quarks were ignored in

pQCD - they rebel at

5 = pe | - lowQ2 and will not be
(1.913%424x,/3.5182) /(1. 4+%,/3.5192) /(1 +x,/0.71)ex4 QZ igﬂored-

0.0% f_

F2 (elastiq)
Neutron

005 £
0.04 L
0.03

0.02 E

0.01 f
III| 1 1 IIIIII| 1 1 IIIIII|
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vW o, lg?, v) =[1 = Wg®) | Faplw”) ,

where Fy(w') is the scaling limit structure func-
tion and

it - L)1)

1+7 !

T= % (14)

is the counterpart of W, for elastic scattering (see

Appendix B}, where G and G, are, respectively,
the elastic electric and magnetic form factors for
the proton. This form satisfies the constraint
that W, vanish at 4 =0. Integrating W,, over all
values of v yields

J

inelastic

avWoyla,v) =[1 - Wi [

EE Fﬂl{w P—' .
inelastle ¥

(15)
But this is the Gotifried sum rule®” for the proton,

where

'd_li o 3
j:“hu v ﬂ{_h}] izq.i

is the sum of the parton charges squared.

(186)

(13)

2. Application

We can now apply these results to the proton and
neutron if we consider them as being made of con-

stifuents. These yield immediately

[ av W m- (tgli)’[1_|pﬁ 7]

isl

+C’{q=}(zﬁz‘:ﬂtﬁi) ?
i#i F

] (B15)
a0 (L ed) - Pl

inel imi

N
+¢H{q=}(z ) e’ei) . (B16)

i#]

F? and F7, would be equal if the momentum dis-
tributions of the constituents were the same in the
proton and neutron, so if the correlation terms
were negligible, one might expect W,/ W,, to scale
to lower values of ¢° than either W,, or W, alone.
Gottiried noted that in the simple quark model the
charge sum in the correlation contribution vanishes
for the proton, but not for the neutron.””

For the case of particles with spin, magnetic
moments, and more realistic ground states, the
results get much more complicated. There are
several more detailed accounts in the case of nu-
clear scattering in the literature.* However, the
Simple approach stated here agrees with the spirit
of the more complex analyses.



T¥or more detailed treatment of closure, see, for
example 0. Kofoed-Hanson and C. Wilkin, Ann. Phys.
(N.Y.) 63, 309 1971); K. W. McVoy and L. Van Hove,
Phys. Rev. 125, 1034 (1962).

YK, Gottfried, Phys. Rev. Lett. 18, 1174 (1967).
i=1

3 1
Fule®)?,

(14) Note: at low Q2

Crnld)= Y. (1~ |Folg) |7 [1-W,el]= 1 -1/(1+Q2/0.71)
i=1
] = 1-(1-4Q2/0.71) =
@y e ~1- (1-Q2/0.178) =
UWH{I?Z; l-"] =[1 _ w;p{q:”F“[w,}i {13} -> QZ /0.178 daS QZ ‘>O
where F,(w’) is the scaling limit structure func-
tion and

6 ) + 16 2() a Versus Our GRV98 fit with
W3lg") = == - T of (14)

1+7 Q2/(Q2+C) -> Q2 /C
- . 3 — -
f,ﬂ-p[qi)/(uq 0.1, ¢ = 0.1797 + 0.0036
P is close to 1 and gives deviations
Arie Bodek, Univ. of Rochester 7
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Talk given at the Sid Drell Symposium

SLAC. Stanford, California, July 31st, 1998
Gottiried noted that in the ‘breathtakingly crude’ naive three-quark model the

second term in the following equation vanishes for the proton (it also vanishes for the
neutron, but neutrons are not mentioned):

ZQ Q=) Qi +).Q:0;. (5)
i i)

Thus for any charge-weighted, flavour-independent, one-body operator all correlations
vanish, and therefore using the closure approximation the following sum rule can be

derived: P 2
E m
/W**’ 24y — 1 - G4 Gl (6)
1 — ¢*/4m?
where vy is the inelastic threshold (the methods used to derive this sum rule are those
that have long been used to derive sum rules in atomic and nuclear physics, for example
the sum rule [13] derived in 1955 by Drell and Schwarz). After observing that this sum

Arie Bodek, Univ. of Rochester 8



rule appears to be oversaturated in photoproduction (we now know that the integral is
actually infinite in the deep inelastic region), Gottfried asked whether it was ‘idiotic’, and
stated that if, on the contrary there is some truth in it, one would want a ‘derivation that
a well-educated person could believe’.

In his talk at the 1967 SLAC conference Bj quoted Gottiried’s paper and stated that
diffractive contributions should presumably be excluded from the integral, which could
be done by taking the difference between protons and nentrons, leading to the following
result, in modern notation:

dr 1

[ (B - B e a?) = = 5. (7

This result, which is generally known as the Gottiried sum rule, is not respected by
the data which give the value [14] 0.235 £ 0.026. In parton notation, the left-hand side
can be written L g

1
E(ﬂu-Fﬂﬁ—ﬂd—ﬂJ]:§+§(ﬂﬁ—ﬂ&]1 (3)

Arie Bodek, Univ. of Rochester 9



w= W
Strangeness-Conserving Case ﬁ= -H_.r1
The kinematic analysis of Sec. 3 shows that we may write the reaction differential cross section in the form

G* cos®e K,
+P'*(;)+|5{3 0) /dﬂ;dEgm —
(2x)* E,

X[ a®(g", W)+ 2E.E, cos'(3¢)8 (¢ W)F (EAEg*y (" W)].  (13)

By measuring d%/d0dE; for various values of the neutrino energy E,, the lepton energy Fy, and the lepton-
neutrino angle ¢, we can determine the form factors o'+, §&, and 4+ for all ¢*>0 and for all W above threshold.
In Sec. 4 we prove that:
(i} the local commutation relations of Eq. (1a) and Eq. (1c) imply

- W
2=gal@®)+ ()¢ () + [ —dW [ (g W) =8 (" W) T; (14)
d M KN
Strangeness-Changing Case )

W
(4,2)= f VBt W) B ) (18)
N

The integrals of Eqs. (18)-(20) have discrete contributions at W= M, and/or Mz and a continuum extending from
We M+ M, or from W=Mz+M, to W=, We have not explicitly separated off the discrete contributions to
the integrals, as was done in Eqg. (14)-(16) for the strangeness-conserving case. It would, of eourse, be straight-
forward to do this,

| Arie- Bédek,_Univ. of Rochéster | 10



_ o Wl
(B) Sum Rule for 3= =W,
The sum rule on 3£ of Eq. (14) is obtained by adding (C) Sum Rule for o'/

together two separately derived sum rules on the axial- ‘
vector and the vector parts of S, 8,3, and 8»':  The sum rule on o of Eq, (13) is obtained by adding together the two identities

W ¢ W
SRl Cr'= (i+—=)gn(w’)‘+ —ill[ag (g ) Mg W], (1)
X84 (W) -84 (8 W)], (532) ; ! ‘”"“I;; !
o« EII=(_)3*'(?')’+ — Wy )=y g )] (73)
=R U iy, M
Myliy &l
¥ [ﬁv{'ﬂ{,ﬁﬁ-’]—ﬂ, [+J|:q?lw}]‘ (53h) Here o™ and Er'ﬂ are, I’E&pﬂl'.ﬁ'-’d}', the axial-vector and the vector piHItE of ﬂm,
In terms of the structure functions defined in Eq, (41), a4 RN, a =P ) (i)
Bt W)= [ @ W () 4 (g W)
F L)+ W]
XA/ 0P Myt+ g, (54 el =Yg 4+ 2M v Fi¥ (g*) ,
Be S )= g [V S (g Wt ) ]
YAM (W= Mg,
[The structure functions Iy () and Dy (¢t ¥) i |
vanish identically in the strangeness-conserving case, Cr'= f dgo( 4y =4 )= ] Fﬂ*’ LA W)= D (g )], (82)

because of conservation of the vector current, ] Since the
derivations of Eqs. (33a) and (53b) are identical, we
will treat explicitly only the axial-vector case, Eq. (33a),

Arie Bodek, Univ. of Rochester 11



http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-0958b.pdf

{5) Isctriplet current

F:, @ = |F} @? - r’ll{qz]l] = Dirac electromagnetic isovector

form factor. (3.15)
g= pp—yn=3.'f1 (¢ = anomalous magnetic moment)
2 2
u- Fo(a®) - p_Fa(a®)
Fﬁ. {qf) =& 2 2 = Pauli electromagnetic
By Py
isovector form factor.
In terme of the Sachs form factors
Fy (g2 ( -ﬂTz _IG" 2 _‘LETG‘FI:Z}]
a® =11- (a=) - q
v 4M ) . an® M
(3. 16)
2 -1
¥o (of) = (1 —'1—) F‘*‘F (a?) - G}, {q"‘}]
§ v 4M2 M E
Experimentally, the G's are described to within = 107 by:
v 1
Gy (%) = P
1 '_"_1—2)
0. 71 GeV
(3.17)
1+p_ -4
Vo2 p__n
Gyt = P 3
(1 - ——“'“*z-)
0,71 GeV

Note that LS define g2 as
negative while Gillman
and Adler it is positive. So
all the —-q2 here should be
written as +Q2, while for
Alder and Gillman
q2=+Q2. Also, in modern
notation Fa is -1.26 and
for n=2, Ma = 1.0 GeV2.
We define GE (vector)=
Gep-Gen We need to put
in non zero Gen

M

2\ 0
Fy(a®) = -1.23;(1_J‘-2—) (3.24)
A



http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-0958b.pdf

{5) Isotriplet current

F:r @? = |Fj @ - r’ll{qz]l] = Dirac electromagnetic isovector

form factor.

£= pp—yn:S.Tl (¢ = anomalous magnetic moment)

= Pauli electromagnetic
isovector form factor.

In terme of the Sachs form factors

g -1 2
,aT) {G‘E{qﬂ; St G"I:I {qz}]
4M

1. 2
Fola®) = |1-
v (12

2 -1
——'1—) H[ (@) - Gy, {-:13}]

Z;
§Fy () ( i

Experimentally, the G's are described to within = 107 by:

aY () = : ;
1”_*1_2)
0,71 GeVv
1+p_ -4
Gyy (4?) = “2 L
(1__4:__2_)
0,71 GeV

Using these equations on the left we get:
F1v=GD [1-GenF +4.71*Q2/(4M2)]/[1+Q2/(4M2)]
(3.15)

F2v=(1/3.71) GD [4.71-1+GenF]/ [1+Q2/4M2]

Equation 14 in Adler’s paper is in a different
notation so we need to use equation 19 in Gillman

(see next page)

SV= [F1v**2 + Tau* 3.71**2* F2v**2 |

And (1-SV) is the vector suppression
4"i'l“'ii:a1**2) is the axial suppression

See next page for GenF

Need to devide by integral from Xsithreshold
To 1.0 of (Dv-Uv). Where Xsi threshold

Is the Xsi for pion threshold

(3.1T)
2\ 0
Fy(a®) = -1.23;(1_J‘-2—) (3.24)
MA



F2 Adler includes Gen term (from equation 13 in
hep-ph/0202183 Krutov
(extraction of the neutron charge form factor, Feb.

2002).

MuN =-1.913

GD = 1/(1+Q2/0.71)**2

Tau = Q2/(4*Mp**2)

a=0.942 and b=4.62

Gen = GenF * GD (GenfF is the factor that
multiplies GD to get Gen)

GenF = -MuN * a * tau/ (1+b* tau) , So Gen 1s
positive

Arie Bodek, Univ. of Rochester 14



The vector current part of the original sum rule of
Adler for neutrino scattering can be written

f UB GO ]=1. (18
il

The functions 8 (gp,g%) are defined just as in Eq. (7)
except that in place of the electromagnetic currents
J(0) and J,(0) we have put the isospin raising or

lowering F-spin currents F e, (0) [recall that F4,(0)
is just the isovector part of the electromarnetic current .
If we explicitly separate out the nucleon Born term in
Eq. (18}, we have

¥

2
£F:*’(q=,‘r]*+@"’( - ) CF ()T

2M x

n f I8 gug) B (gug?) =1,
Mo+ (4 M {19}

where the superscript V' denotes the fact that we are
dealing with the isovector part of the current; the
isovector anomalous magnetic moment p¥=u, —u.’
=3.70. As ¢° — 0, we see from Eq. (10} or (17) that only
the fust term, [F\V{(g") %, on the lefi-hand side of
Eq. (19) survives, and as ¢*— 0 it goes to 1, in agree-
ment with the left-hand side,

In the derivation® of Eq. (18) enly two assumptions
enter: (1) the commutation relation Eq. (3a) of the
F-spin densities, and (2) an unsubtracted dispersion
relation for the forward Compton scattering amplitudes
(which are the coefficients of p,p, and g9 in the ex-
pansion of T',,) corresponding to 8(g,q*). It is of course
the second assumption which is most open to question.
However, we note the following:

(a) The fact that as g — 0 the left- and right-hand
sides of Eq. (19) as it now stands automatically be-
come equal rules out a g*independent subtraction, This
just means we have done nothing grossly wrong, eg.,
introduced a kinematic singularity in ¢* in one of our
amplitudes.

Arie Bodek, Univ. of Rochester 15



ol go,q*) = (g% 4M w5 )L Folg®) +pFalg®) Polgo—g°/ 2 )
= (g M) [Garlg®) Jolgo— '/ 2M w) (8a)

and
Blgag®h = {[F1lg®) P+ (g% AM w*) [Falg®) 1)
X b(ge— g% 2M x)  (Bb)
_[Gly®) I+ g/ 40 ) [ Gl ) )
142/ 434 5
X 6lge—g* 2M ). (Bc)

It is easily verified that on putting these one-nucleon-
state contributions to o and 8 in Eq. {6) and integrat-
iy weer @7, one obslaing the Rosenblutd formuols for
elagtic electron-nucleon scattering.

Since aliga,g®) and Sgo,g%) arve related to the imaginary
part of forward Compton scattering of photons of

3 The quantity J.(x) is the Heisenberg :Ivutlmmi;ﬂurit current
operator divided by the electronic charge £ By conserved-
}rtFF[.r:-]?"?nE ?jmthﬁiﬂ-,. Jolx) ia just the F-spin current, i.e.,

. = x).

¥ FilgT) |!|.1"'|:|.Fglfq’] are the wsual Dirac and Pauli electrom Lhe
form fxctors of the nuclson, normalized =0 thal &[0} =F{0) =1,
and p is the anomalous rna.gu!ﬂn: moamsent in Bohr magnetons.
Ge=Fi— (@AM "1 Fy and Gy=Fi+pl: are the Sachs electric
and magnetic form rs of the nuclean.

. Note that Gillman has
two extra factor of M in
equation 12, 13 (which
cancel) with respect to
modern definitions so
Alpha is what we call W1
and Beta is what we call
W2 today.

doe do® E?

dAE o My
w [2W g g ) sin® (38 + Walghe - #) cos® (3807, (12)

s0 that their functions Wy and 1 are related to o and

g by
we= Wy My,

B=Ws/My. (13)

lochester 16



Before:

And C is probably somewhat different

[1-Ge2el]=1-1/(1+Q2%2/0.71)4

for the sea quarks.

= 1-(1-4Q%/0.71) = F2nu-p(vector)= d+ubar

= 1- (1-Q%2/0.178) = F2nubar-p(vector) =u+dbar

> 02/0.178 as Q2->0 1=F2nubar-p-F2nu-p= (u+dbar)-
(d+ubar)

Is valid for VALENCE QUARKS
FROM THE ADLER SUM RULE
FOR the Vector part of the
interaction

Versus Our GRV9S fit with

Q% /(Q%+C) > Q?/C
c = 0.1797 +- 0.0036

Arie Bodek,

= (u-ubar)- (d-dbar) =1
INCLUDING the
x=1 Elastic contribution
Therefore, the inelastic part is

reduced by the elastic x=1 term.

Univ. of Rochester 17



- g

v =W
2em galg P+ PV () g Fa (g —awipog ) -pgwy  B=Wa

M-y Il

Above is integral of F2(&w) dew/ Ew
Since: &Ew=

[Q2 +B] / [Mv (1+(1+Q2/v2) ) 1/2 +A]
At low Q2 Ew= [Q’2 +B] / 2Mv
where Q2 =[Q2+ m %] And B and A
to account for effects of additional Dm
from NLO and NNLO effects.

W2=M2+2 Mv - Q2
2W dW = 2 M dv

At fixed Q2 (W/M)dW= dv
Ew= [Q’2 +B] / 2Mv

dew= [Q’2 +B] / 2Mv [dv/v]
dv = v dew/ Ew

Arie Bodek, Univ. of Rochester 18



Q2

0.1
*0.25
0.5
*0.75

*1.25
*1.5

*2.25
2.5
*2.75

*10
+20
+100

«C=0.178
-Q2/(Q2+C)

+0.000
+0.360
+0.585
+0.738
+0.809
+0.849
0.876
+0.894
*0.918
+0.927
+0.934
+0.939
+0.944
+0.958
+0.966
+0.983
+0.991
+0.998

*Vector
+0.000
0.227
<0.470
«0.701
+0.819
+0.883
<0.921
+0.945
+0.970
«0.977
+0.983
+0.986
+0.989
0.995
0.997
+1.000
+1.000
+1.000

«Adler
«Axial

+-0.588
+0.063
0.525
+0.812
+0.911
0.953
*0.973
+0.983
+0.993
0.995
+0.996
0.997
+0.998
+0.999
+1.000
+1.000
+1.000
+1.000

*0.71

1-GD2

0

*0.410
+0.701
+0.881
+0.944
+0.970
+0.983
+0.989
+0.995
+0.997
+0.998
+0.998
+0.999
+0.999
+1.000
+1.000
+1.000
+1.000

SV=F1v**2 + Q2 F2v**2 =
(1/[1+Q2/4M2]) *

GD**2 {
[1+4.71*Q2/(4M2)]**2 + Q2}
And (1-SV) is the vector
suppression

GD2 =1/[1+Q2/0.71]**4

At Q2=0

(1-SV)/Q2 =

(4/0.71 - 3.71/(2M2)+1) =
4.527 = 1/0.221

Will give better
photoproduction
Cross section.

Arie Bodek, Univ. of Rochester 19



B  L=Wog")
|u|[":-|| “‘rlll iEL.-"':'T'FE':J:. H':f-“'rh tl “'r? ﬂ-q:. a ]

Iy ditdk
=0 (0%, W +0 g%, W) i1 lt.ﬂ.) [F'[ 3]
K add s W, E(m)(lﬂ_ﬂ ﬁ_ll' o g% W,
(20)
where o5 and 0,,, are the resonance and back- (23]
ground contributions to the cross sections. In
order to remove some of the known kinematic where we have used R =0.23¢" which has the cor-
variations, we write the atructure function v )
s ! We can use the above form from Stein et al
except:

v lgt, W =[1 =W )] Fylw') Bilg*, W) .. )
‘ 1. We use Xsiw instead of omega prime

2. We use F2 (Q2min where QCD freezes
instead of F2 (infinity)

s quar fe1 Lim —“’{“[i]

{21)
here the term in the 1 brckete | 3. We use our form for 1-SV derived from
e eded eo that he large square brackets 1s Adler sum rule for [1-W2 (elastic,Q2)]

lim Bg*, W) =0 ,(W) 22y 4. We use R1998 for R instead of 0.23 Q2.

and 0,,(W} is the total photoproduction cross 5. Limit (1-SV)/Q2 is now 4.527 or
sectlon, This makes 1/0.221

Arie Bodek, Univ. of Rochester 20



One could gets the factors for Dv and Uv separately by using the Adler sum rules for the
STRANGNESS CHANGING (DS=+-1 proportional to sin2 of the Cabbibo angle )(where
he gets 4, 2) if one knew the Lambda and Sigma form factors (Flv, F2v, Fa) as follows.
Each gives vector and axial parts here cosTC and SinTc are for the Cabbibo Angle.

F2nub-p (DS=0)/cosTc = u +dbar (has neutron final state udd quasielatic)
F2nu-p (DS=0)/(costTc = d + ubar (only inelastic final states)
F2nub-p (DS+-1)/sinTc = u + sbar (has Lambda and SigmaO uds gausi)

F2nub-n (DS+-1) = d + sbar (has Sigma- =dds quasi)

1
2
3
4.  F2nu-p (DS+-1)=/sinTc= s + ubar (making uud + sbar continuum only))
5
§) F2nu-n (DS+-1)=s + ubar (making udd + sbar continuum only))

A

. strangeness conserving is Equations 1 minus 2 = Uv-DV = 1V+1A = 2 (and at Q2=0
has neutron quasielastic final state) (one for vector and one for axial)

B. strangeness changing on neutrons is Equation 5 minus 6 = Dv = 1V+1A = 2(and at
Q2=0 has Sigma- gasielastic)

C. strangeness changing on protons is Equation 3 minus 4 = Uv = 2V+2A =4 (and at
Q2=0 has both LambdaO and SigmaO gausielastic. Note according to Physics reports
artilce of Llwellyn Simth - Deltal=1/2 rule has cross section for Simga0O at half the
value of Sigma-+).

Arie Bodek, Univ. of Rochester 21



Need to add charm final states
F2nub-p (DS=0)/cosTc = u +dbar (has neutron final state udd quasielatic)
F2nu-p (DS=0)/(costTc = d + ubar (only inelastic final states)
F2nub-p (DS+-1)/sinTc = u + sbar (has Lambda and SigmaO uds gausi)

F2nub-n (DS+-1) = d + sbar (has Sigma- =dds quasi)

1
2
3
4.  F2nu-p (DS+-1)=/sinTc= s + ubar (making uud + sbar continuum only))
5
§) F2nu-n (DS+-1)=s + ubar (making udd + sbar continuum only))

A

. strangeness conserving is Equations 1 minus 2 = Uv-DV = 1V+1A = 2 (and at Q2=0
has neutron quasielastic final state) (one for vector and one for axial)

B. strangeness changing on neutrons is Equation 5 minus 6 = Dv = 1V+1A = 2(and at
Q2=0 has Sigma- qgasielastic)

C. strangeness changing on protons is Equation 3 minus 4 = Uv = 2V+2A =4 (and at
Q2=0 has both LambdaO and SigmaO gausielastic. Note according to Physics reports
artilce of Liwellyn Simth - Deltal=1/2 rule has cross section for Simga0O at half the
value of Sigma-+).
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Llewellyn Smith Phys. Reports C has most of the stuff

See also: S. Adler, Ann. Phys. 50 (1968) 189 where he does electroproduction and
photoprduction in first resonance but has deviations at high Q2 (did not know about
DIS) *

For Lambda production in neutrino see: V. V. Ammosov et al JETP Letters 43, 716 (1986)
and references in it to earlier Gargamelle data (comparison with LLS papers)

See K. H. Althoff et al Phys Lett. B37, 535 (1971) for Lamda S Form factors from decays.

For Charm production one needs to understand Charm Lambda C transition form factor
to see what the low Q2 suppression is for the DIS. Is it the nucleon intital state form
factor or the final state smaller LambdaC. Probably initital state/

For example http://jhep.sissa.it/archive/prhep/preproceeding/003/020/stanton.pdf

Form factors in charm meson semileptonic decays.

By E791 Collaboration (N. Stanton for the collaboration). 1999. 8pp.

Prepared for 8th International Symposium on Heavy Flavor Physics (Heavy Flavors 8), Southampton,
England, 25-29 Jul 1999.

Says for single pole fits MV=2.1 and MA=2.5 for the D meson

Versus

Analysis of pion-helium scattering for the pion charge form factor.
By C.T. Mottershead (UC, Berkeley). 1972.

Published in Phys.Rev.D6:780-797,1972 which gives

For Gaussian and

Yukawa pion charge distributions. The results indicate 2.2<r pi <3.2 F

Arie Bodek, Univ. of Rochester 23



Modified LO PDFs for all Q2 (including 0)

Results for Scaling variable

YV Ews=[Q2B]/[ Mv (1+(1+Q2/v2)12) +A]

A=0.418 GeV?, B=0.222 GeV? (from fit)

A=initial binding/target mass effect plus
NLO +NNLO terms)
B= final state mass Am? from gluons plu

s initial Pt.
Very good fit with modified GRV98LO

%2 =1268 /1200 DOF
Next: Compare to Prediction for data not
included in the fit

. Compare with SLAC/Jlab resonance dat
a (not used in our fit) ->A (w, Q?)
Compare with photo production data (n

ot used in our fit)-> check on K producti
on threshold

Compare with medium energy neutrino d
ata (not used in our fit)- except to the ex
tent that GRV98LO originally included ve
ry high energy data on xF;,

Arie Bodek, U

FIT results for K photo-production threshold

N

FZ(X! QZ) =K* F2QCD(E W, QZ) *A (W! QZ)
Fx(x, @2<0.8) =K * F5(E w, Q2=0.8)

For sea Quarks we use

K=Ksea = Q2/[Q2+Csea]

Csea = 0.381 GeV?2 (fromfit)

For valence quarks (in order to satisfy t

he Adler Sum rule which is exact do
whn to Q2=0) we use

K = Kvalence

= [1- G, 2(Q?) ] [Q2+C2V]/ [Q2+C1V]
Gp2(Q?) = 1/[1+Q?/0.71]4

elastic nucleon dipole form factor sq

uared. we get from the fit
C1V =0.604 GeV?, C2V =0.485 GeV?

Which Near Q2 =0 is equivalent to:

Kvalence ~ Q2/[Q2+Cvalence]
With Cvalence=(0.71/4)*C1V/C2V=

— 2
v, ofBeliBedek and ﬁ%gzggpgﬁééosoog]

24




Adler Sum rule EXACT all the way down to Q%=0 includes W, quasi-elastic

Origin of low Q2 K factor for Valence Quarks

 B- =W, (Anti-neutrino -Proton)
« B+=W, (Neutrino-Proton) q0=v

The vector current part of the original sum rule g

g4(g®) +

|

dgel 8 {gmg?)

Mot (e + M M %
AXIAL Vector part of W,

~f m(ﬁfmif} :[ =1,

Adler for neutrino scattering can be written

f B @) —BP ) ]=1.  (18)
il

If we explicitly separate out the nucleon Born term in
Eq. (18}, we have

L) T+t u ) F ()]

+ f da B gog)—B M (gog®)]=1,
M le A oy

Vector Part of W2

at fixed g?= Q?

Arie Bodek,—Univ—of Rochester
Ialll , . 1

Adler is a number sum rule at high Q2

]

f dqufﬂi—‘{qn, :z"a_rj{—".l{ng:,]_. =1 is

1

f =

e [1v,®-

0
F,=F, (Ant| -neutrino -Proton) = v W,

D,(§)ldz=2-1

F2+= F, (Neutrino-Proton) =v W,
we use: d(q0)=d(v)=(v)dE/E

N
a




Valence Quarks Fixed q*=Q’

_Adler Sum rule EXACT all the way down to Q?=0 includes W, quasi-elastic

Quasielastic 6 -function Integral of Inelastic
1=
(F, -F+, )dg/g + (F -F*+, )d&/E
Integral Separated out both resonances and DIS
2 AAY .
)= @) I

E pion threshold
[EU9(E,)-EU%(E, Il - 8, (QIME, &,
0 § pion threshold + gV(QZ) =1

N@)=  [IEUYP(E,)-EU% (&, WE, IE,

0

If we assume the same S 2 &VQCD (;‘;.W, Qz)][l —g ( Qz)]
form for Uv and Dv ---> Fz (gw’Q )= N(Q2)

Arie-Bodek,—Univ—of Rochester 2
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Adler Sum rule EXACT aII the way c down to QZ—O mcludes W, quasi-elastic

— - —

This form

SWVQCD (?S‘w an)] [1 - gv(Qz)] Satisfies Adler

VALENCE Vector 2
k. 2 (EW’Q )= N( Qz) Number sum Rule
at all fixed Q2
1 - 2 + 2 1 - i i
[F (g,Q )- F (g,Q )] F, = F, (Anti-neutrino -Proton)
f : &. : dg = f[Uv(E) B Dv(g)]dg =l exact F2+= F, (Neutrino-Proton

0
1 While momentum sum

f ;' & Q )+ F . g Q )+ X8 (5 Q ) dg ~1 Rule has QCD and Non Pertu.

0
corrections

0

@ Use: K=Kvalence= [1-Gp2(Q?)] [Q3+C2V]/ [@Q%+C1V]
« Where C2V and C1V in the fit to account for both electric and magnetic terms

And also account for N(Q? ) which should go to 1 at high Q2.

This a form is consistent with the above expression (but is not exact since it assume
s no dependence on £  or W (assumes same form for resonance and DIS)

Here: G2 (Q?) = 1/[1+Q?/0.71]4 = elastic nucleon dipole form factor

\¢}

j>

N,

R : ;

[Ref:Bodek and Yang hep-ex/0



