Classical Mechanics - Module 7

- 1. Listed below are several statements concerning central force motion. For each statement, give the reason for why the statement is true. If a statement is only true in certain situations, then explain when it holds and when it doesn't. The system referred to below consists of mass m_1 located at r_1 and mass m_2 located at r_2 .
 - The potential energy of the system depends only on the difference $r_1 r_2$, not on r_1 and r_2 separately.
 - The potential energy of the system depends only on the magnitude of $r_1 r_2$, not the direction.
 - It is possible to choose an inertial reference frame in which the center of mass of the system is at rest.
 - The total energy of the system is conserved.
 - The total angular momentum of the system is conserved.
- 2. A particle of mass m moves in a potential $U(r) = -U_0 e^{-\lambda^2 r^2}$.
 - (a) Given the constant l, find an implicit equation for the radius of the circular orbit. A circular orbit at $r = \rho$ is possible if

$$\left(\frac{\partial V}{\partial r}\right)\Big|_{r=\rho} = 0$$

where V is the effective potential.

- (b) What is the largest value of l for which a circular orbit exists? What is the value of the effective potential at this critical orbit?
- 3. A particle of mass m is observed to move in a spiral orbit given by the equation $r = k\theta$, where k is a constant. Is it possible to have such an orbit in a central force field? If so, determine the form of the force function.
- 4. The interaction energy between two atoms of mass m is given by the Lennard-Jones potential, $U(r) = \epsilon \left[(r_0/r)^{12} 2(r_0/r)^6 \right]$
 - (a) Determine the Lagrangian of the system where r_1 and r_2 are the positions of the first and second mass, respectively.
 - (b) Rewrite the Lagrangian as a one-body problem in which the center-of-mass is stationary.
 - (c) Determine the equilibrium point and show that it is stable.
 - (d) Determine the frequency of small oscillations about the stable point.
- 5. Consider two bodies of mass m in circular orbit of radius $r_0/2$, attracted to each other by a force F(r), where r is the distance between the masses.
 - (a) Determine the Lagrangian of the system in the center-of-mass frame (Hint: a one-body problem subject to a central force).
 - (b) Determine the angular momentum. Is it conserved?
 - (c) Determine the equation of motion in r in terms of the angular momentum and $|\mathbf{F}(r)|$.
 - (d) Expand your result in (c) about an equilibrium radius r_0 and show that the condition for stability is, $\frac{F'(r_0)}{F(r_0)} + \frac{3}{r_0} > 0$
- 6. Consider two charges of equal magnitude q connected by a spring of spring constant k' in circular orbit. Can the charges oscillate about some equilibrium? If so, what condition must be satisfied?
- 7. Consider a mass m in orbit around a mass M, which is subject to a force $F = -\frac{k}{r^2}\hat{r}$, where r is the distance between the masses. Show that the Runge-Lenz vector $A = p \times L \mu k \hat{r}$ is conserved.