P235 PRACTICE FINAL EXAMINATION Prof Cline
THIS IS A CLOSED BOOK EXAM. Show all steps to get full credit. Answer questions 1,2 in
Book 1: questions 3, 4, in Book 2.

Book 1

1; [25pts] A point particle of mass m in a gravitational field is
constrained to slide on the inner surface of a frictionless smooth
paraboloid. The equation of the paraboloid is z

x2—|—y2:az

with the z axis of the paraboloid vertical and with gravity acting
vertically downward.
a) Find the Lagrangian for the motion in cylindrical coordinates
(p, 9, 2)
b) Use Noether’s theorem to identify all constants of motion
¢) Derive the equations of motion using the Lagrangian.
d) Derive the forces of constraint : >y
e) Show that at any instant there is a central force directed toward )
a point on the z-axis on the same horizontal plane as the particle. x

—n

2; [25pts] Consider a uniform, infinitely-thin, rigid, circular disk of radius R and mass M.
Assume that the body-fixed symmetry axis is the 3 axis in the body-fixed frame. The thin disk is
thrown like a discus such that it spins with angular velocity w about an axis that makes an angle
« to the symmetry axis of the disk where « is a small angle. Assume that no torques or drag act
on the disk.

a) Derive the principal moments of inertia about the center of mass of the disk.

b) Use the Euler equations to prove that the component of the angular velocity w along the
symmetry 3 axis, ws, is a constant of motion.

c¢) Prove that the total angular frequency w is a constant of motion.

d) Derive the Lagrangian expressed in terms of the Euler angles and angular velocities for this
system.

e) If py is the angular momentum conjugate to the angle ¢ about the space-fixed z axis, and
py is conjugate to the angle 1 about the body-fixed 3 axis, then use the Lagrangian to prove that
both pg and py are constants of motion for rotation of the disk.



Book 2

3; (25pts) A simple pendulum consists of a mass m attached to a
massless string of length [ which is hung from a support of mass M that
slides on a frictionless horizontal rail. The mass M is attached to a
fixed point via a horizontal massless spring having a force constant x as
shown in the figure.

a) Derive the Lagrangian. h‘(

b) Derive the Lagrange equations of motion P

c¢) Find the angular frequencies of the normal modes of this system y [
assuming small amplitude oscillations. L)

l I
d) Sketch diagrams showing the relative motion of the mass M and
: X

the pendulum corresponding to each of the normal modes.

4; (25pts) A rigid straight, frictionless, massless, rod rotates about the z axis at an angular
velocity 6. A mass m slides along the frictionless rod and is attached to the rod by a massless
spring of spring constant x.

a; Derive the Lagrangian and the Hamiltonian

b; Derive the equations of motion in the stationary frame using Hamiltonian mechanics.

c; What are the constants of motion?

d; If the rotation is constrained to have a constant angular velocity 0 = w is the non-cyclic
Routhian R, oncyciic = H — pgf a constant of motion, and does it equal the total energy?

e; Use the non-cyclic Routhian Ryoneyeric to derive the radial equation of motion in the

rotating frame of reference for the cranked system.

m



Useful formulae

Damped harmonic oscillator:
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Solution for % < w, is
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Sinusoidal-driven damped harmonic oscillator

Pz dx

yTel + FE + wiz = Acos (wt)
Steady-state solution is
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Lagrange equations
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Hamiltonian
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Hamilton’s equations of motion
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(i=1,2,3,..5)



Cylindrical coordinates
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Spherical coordinates

L=T-U-=

1
H:T+U:—<pf+
2m

Poisson Brackets
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Canonical transformations

Generating function Generating function derivatives Trivial special case
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Virial Theorem
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Effective force in rotating reference frame
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Transformation from fixed to rotating frame
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Inertia tensor

Angular momentum
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Parallel-axis theorem
Jij = Ii]' + M (a2(5i]‘ — aiaj)

Euler equations for rigid body
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Angular velocity in body-fixed frame

(bl + 601 —|—¢1 = ¢sinfsine) + 0 cos

w; =
wy = ¢2—|—92 —|—1/)2 $sinfcosyp — Osiny
wg = ¢3+03+w3:¢cos0+¢

Angular velocity in space-fixed frame
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Coupled oscillators

Special Relativity

Vectors;
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