P235 - PROBLEM SET 10

To be handed in by 1800 hr on Friday, 20 November 2015.

- 1. Four identical masses m are connected by four identical springs, spring constant κ , and constrained to move on a frictionless circle of radius b as shown in the figure.
 - a) How many normal modes of small oscillation are there?
 - b) What are the eigen frequencies of the small oscillations?
 - c) Describe the motion of the four masses for each eigen frequency.

2. Consider the two identical coupled oscillators given on the right in the figure assuming $\kappa_1 = \kappa_2 = \kappa$. Let both oscillators be linearly damped with a damping constant β . A force $F = F_0 \cos(\omega t)$ is applied to mass m_1 . Write down the pair of coupled differential equations that describe the motion. Obtain a solution by expressing the differential equations in terms of the normal coordinates. Show that the normal ccordinates η_1 and η_2 exhibit resonance peaks at the characteristic frequencies ω_1 and ω_2 respectively.

3. Three oscillators of equal mass m are coupled such that the potential energy of the system is given by

$$U = \frac{1}{2} \left[\kappa_1 \left(x_1^2 + x_3^2 \right) + \kappa_2 x_2^2 + \kappa_3 \left(x_1 x_2 + x_2 x_3 \right) \right]$$

where $\kappa_3 = \sqrt{2\kappa_1\kappa_2}$.

- a) Find the eigen frequencies by solving the secular equation.
- b) What is the meaning of the zero-frequency mode?
- 4. As shown the mass M moves horizontally along a frictionless rail. A pendulum is hung from M with a weightless rod of length b with a mass m at its end.

a) Prove that the eigenfrequencies are

$$\omega_1 = 0$$

$$\omega_2 = \sqrt{\frac{g}{Mb}(M+m)}$$

b) Describe the normal modes.

5. A thin hoop of radius R and mass M oscillates in its own plane hanging from a single fixed point of the hoop as shown below. Attached to the hoop is a small mass M at the point Q that is constrained to move (in a frictionless manner) along the hoop. Consider only small amplitude oscillations, and show that the eigenfrequencies are

$$\omega_1 = \sqrt{2}\sqrt{\frac{g}{R}}$$
$$\omega_2 = \frac{\sqrt{2}}{2}\sqrt{\frac{g}{R}}$$

Find the two sets of initial conditions that allow the system to oscillate in its normal modes. Describe the physical situation for each mode.

