AGATA The Advanced Gamma Ray Tracking Array

Dino Bazzacco, INFN Padova on behalf of the AGATA collaboration

- Next "big" European $4\pi \gamma$ -array for NS studies at
 - Radioactive beam facilities: GSI, GANIL, SPES, ... EURISOL
 - High intensity stable beam facilities: LNL, Jyväskylä, ...
- Based on years of worldwide R&D on γ -ray tracking
- Collaboration of 10 EU countries
 - Funded by national agencies and by EU
- Constructed in phases
 - Demonstrator $2003 \cdots 2007$
 - Phases of Full Array · · ·

Workshop on the Experimental Equipment for RIA, March 18-22, 2003, Oak Ridge

The AGATA Collaboration

- **Bulgaria**: Univ. Sofia
- Denmark: NBI Copenhagen
- *Finland:* Univ. Jyväskylä
- *France:* GANIL Caen, IPN Lyon, CSNSM Orsay, IPN Orsay, CEA-DSM-DAPNIA Saclay, IReS Strasbourg
- **Germany:** HMI Berlin, Univ. Bonn, GSI Darmstadt, TU Darmstadt, FZ Jülich, Univ. Köln, LMU München, TU München
- *Italy:* INFN/Univ. Padova, Milano, LNL, Firenze, Camerino, Napoli, Genova
- **Poland**: NINP & IFJ Krakow, SINS Swierk, HIL & IEP Warsaw
- *Romania*: NIPNE & PU Bucharest
- *Sweden:* Univ. Lund, KTU Stockholm, Univ. Uppsala
- UK: CLRC Daresbury, Univ. Brighton, Keele, Liverpool, Manchester, Paisley, Surrey, York

AGATA Organisation

Steering Committee **ASC** Chair: Marcello Pignanelli, Milan 14 representatives of 10 EU countries

Management Board **AMB** PM: John Simpson, Daresbury 7 Working Groups

~20 Working Teams

R&D on *γ*-ray tracking

• MC simulations

EGS4, MCNP, GEANT3 \rightarrow GEANT4

- gamma-ray tracking algorithms
 Clusterization*, Backtracking,
 Forward Fuzzy Tracking, Probabilistic Tracking, ...
- Pulse Shape Analysis
- Segmented Ge detectors
- Electronics (\rightarrow in Electronics-III)

*For consistency, all quoted figures are from the Clusterization algorithm

The "Standard" Germanium Shell

Assuming 5 mm Position Resolution

Effciency of Standard Ge Shell vs. Position Resolution and γ Multiplicity

Segmented Ge detectors & PSA

- Medium-fold segmentation
 - VEGA \rightarrow 4-fold clover, large crystals
 - EXOGAM \rightarrow 4-fold clovers
 - MINIBALL \rightarrow 6-fold and 12-fold, hexaconical encapsulated
 - Liverpool \rightarrow 6 x 2 -fold, cylindrical, inner segmentation
- High-fold segmentation
 - MARS \rightarrow 25 fold cylindrical
 - TIGRE \rightarrow 24 fold, 36 fold cylindrical
- Characterisation of detectors \rightarrow A. Boston
- Pulse Shape Analysis Algorithms
 - GA \rightarrow works fairly well but very slow
 - ANN \rightarrow fast but rather impossible to train for complete detector
 - Wavelets based Pattern Recognition
 - \rightarrow being developed for realistic crystals

MARS 25-fold segmented prototype

Length: 90 mm Diameter: 72 mm Efficiency ~ 80 % $6 \times 4 + 1$ segments

cold FETs for all segments; warm FET for core

Pulse Shape Calculations and Analysis by a Genetic Algorithm

In-beam test of PSA performance

MARS at GASP

DAQ of MARS

MC Simulation of Experiment

of simulated interactions points using a GA

energy resolution of detector 2.2 keV @ 846.8 keV

Correction of Doppler Broadening

reconstruction of interaction points by a Genetic Algorithm

Tapered detectors will perform better as most of the difficult front part is cut away Analysis by Thorsten Kröll, LNL-TUM Only 10% of data analyzed so far

AGATA SPECS

Quantity	Specified for	Target Value
Photo-peak efficiency (8 _{ph})	E _γ = 1 MeV, M _γ = 1, β < 0.5 E _γ = 1 MeV, M _γ = 30, β < 0.5 E _γ = 10 MeV, M _γ = 1	50 % 25 % 10 %
Peak-to-total ratio (P/T)	$E_{\gamma} = 1 \text{ MeV, } M_{\gamma} = 1$ $E_{\gamma} = 1 \text{ MeV, } M_{\gamma} = 30$	60 - 70 % 40 - 50 %
Angular resolution ($\Delta \theta_{\gamma}$)	∆E/E < 1%	better than 1°
Maximum event rates	$M_{\gamma} = 1$ $M_{\gamma} = 30$	3 MHz 300 kHz
Inner free space (R _i)		170 mm

Detector requirements:

efficiency, energy resolution, dynamic range, angular resolution, timing, counting rate, <u>modularity</u>, angular coverage, inner space

Geodesic Tiling of Sphere using 60–240 hexagons and 12 pentagons

180

200

Two candidate configurations

Ge crystals size: length 90 mm diameter 80 mm

120 hexagonal crystals 2 shapes	18
40 triple-clusters 2 shapes	60
Inner radius (Ge) 17 cm	In
Amount of germanium 220 kg	A
Solid angle coverage 74 %	S
Singles rate ~70 kHz	Si
4320 segments	64
Efficiency: 38% (M,=1) 21% (M,=30)	E
Peak/Total: 63% (M,=1) 47% (M,=30)	Pe

80 hexagonal crystals 3 shapes 0 triple-clusters all equal ner radius (Ge) 22 cm mount of germanium 310 kg olid angle coverage 80 % ingles rate ~50 kHz 480 segments fficiency: $40\% (M_{\gamma}=1)$ 25% (M_v=30) Peak/Total: 65% (M,=1) 50% (M = 30

Comparison of the 2 configurations

Number of crystals	120	180
Solid Angle (%)	74	80
$\varepsilon_{\rm ph}$ / PT at M = 1 (%)	38 / 63	40 / 65
$\epsilon_{\rm ph}$ / PT at M = 1 (%)	21 / 47	25 / 50
Inner free space (cm)	16	21*
Angular resolution		better
Counting rate (kHz)	70	50
Number of clusters / types	40 / 2	60 / 1
Rings of clusters	3-7-10-10-7-3	5-10-15-15-10-5
Angular coverage of rings	irregular	very regular
Electronics channels	4440	6660
Cost	nn M €	30 % higher ?

To reduce cost of germanium, A-180 could be squeezed to similar size as A-120. Efficiency reduces also but all nice symmetries remain; smaller crystals simplify PSA.

The Phases of AGATA-180

4π Array

AGATA Detectors

Hexaconical Ge crystals 90-100 mm long 80 mm max diameter 36 segments Al encapsulatation 0.6 mm spacing 0.8 mm thickness

37 vacuum feedthroughs

3 encapsulated crystals

- 111 preamplifiers with cold FET
- ~230 vacuum feedthroughs

LN₂ dewar, 3 liter, cooling power ~6 watts

Italy&Germany ordering 3 symmetric encapsulated crystals. Cryostat will be built by CTT in collaboration with IKP-Köln Cluster ready by mid 2004

Dead Materials and Inner Detectors

Starting to build AGATA

The Forward Quadrant with 45 crystals in 15 triple-clusters

The First Step: The AGATA Demonstrator

Objective of the final R&D phase 2003-2007

1 symmetric triple-cluster **5 asymmetric triple-clusters** 36-fold segmented crystals 540 segments 555 digital-channels Eff. 3 - 8 % @ $M_{\gamma} = 1$ Eff. 2 - 4 % @ $M_{\gamma} = 30$

Full ACQ

with on line PSA and γ -ray tracking **Test Sites:**

GANIL, GSI, Jyväskylä, Köln, LNL Cost ~ 7 M €