
Physics Letters A 378 (2014) 766–769
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Improving Einstein–Podolsky–Rosen steering inequalities with state
information

James Schneeloch a,∗, Curtis J. Broadbent a,b, John C. Howell a

a Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, United States
b Rochester Theory Center, University of Rochester, Rochester, NY 14627, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 September 2013
Received in revised form 18 December 2013
Accepted 15 January 2014
Available online 21 January 2014
Communicated by P.R. Holland

Keywords:
EPR-steering
Entanglement
EPR-paradox
Uncertainty relations
Entropy

We discuss the relationship between entropic Einstein–Podolsky–Rosen (EPR)-steering inequalities and
their underlying uncertainty relations along with the hypothesis that improved uncertainty relations lead
to tighter EPR-steering inequalities. In particular, we discuss how using information about the state of
a quantum system affects one’s ability to witness EPR-steering. As an example, we consider the recent
improvement to the entropic uncertainty relation between pairs of discrete observables (Berta et al.,
2010 [10]). By considering the assumptions that enter into the development of a steering inequality,
we derive correct steering inequalities from these improved uncertainty relations and find that they are
identical to ones already developed (Schneeloch et al., 2013 [9]). In addition, we consider how one can
use state information to improve our ability to witness EPR-steering, and develop a new continuous
variable symmetric EPR-steering inequality as a result.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Uncertainty relations are used not only to great effect in ex-
pressing fundamental limitations of precision measurements; they
are also useful in witnessing entanglement through demonstra-
tions of the EPR-paradox [1] by the violation of EPR-steering in-
equalities.1 Since EPR-steering inequalities are derived from un-
derlying uncertainty relations, it is natural to consider whether
improved uncertainty relations inevitably lead to improved EPR-
steering inequalities. We provide an answer to this question in this
letter, as well as explore just how additional information from the
state of a system can be used to improve one’s ability to witness
EPR-steering.

EPR-steering is a form of nonlocality intermediate between Bell-
nonlocality and nonseparability [2]. A joint quantum system is
said to exhibit EPR-steering (or be EPR-steerable) if its local mea-
surement correlations are sufficiently strong to demonstrate the
EPR-paradox [1]. As a consequence of EPR-steering, consider two
parties, Alice and Bob, sharing quantum systems A and B , respec-
tively. Bob can determine that he and Alice share entanglement
even when he does not trust Alice’s measurements provided A and
B are sufficiently entangled. Bob does this by ruling out the pos-

* Corresponding author.
1 EPR-steering inequalities are relations illustrating that, if the effect of measure-

ment indeed cannot travel faster than light, then the measurement uncertainties of
one party, whether or not they are conditioned on the outcomes of another party,
have the same lower bound.
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sibility that Alice is preparing and sending systems to Bob, and
then using her knowledge of those systems to announce fabricated
“measurements” she expects to be correlated to Bob’s results. In
this scenario, the measurement correlations across complementary
observables (say, in both position and momentum, or in linear and
circular polarizations of light) can only be so high. These models,
in which Bob is receiving an unknown, but well-defined, quantum
state classically correlated to Alice’s results, are known as models
of local hidden states (LHS) for Bob. When the measurement corre-
lations across complementary observables is sufficiently high, Bob
can rule out all LHS models and verify that he and Alice must be
sharing entanglement.

Ruling out LHS models for Bob is done by violating EPR-steering
inequalities, i.e., inequalities derived from the necessary form that
the joint measurement probabilities must have (11) in an LHS
model (for Bob). Steering inequalities are useful not only because
they witness entanglement without needing to perform complete
state tomography; they also verify entanglement between two par-
ties even when the measurements of one party are untrusted [2].
For this reason, steering inequalities have been shown to be useful
in entanglement-based quantum key distribution [4].

In some cases, improvements to uncertainty relations lead to
better EPR-steering inequalities. For example, Białynicki-Birula and
Mycielski’s entropic uncertainty relation [5] for position and mo-
mentum encompasses the variance-based Heisenberg uncertainty
relation [6]. Similarly, the resulting entropic EPR-steering inequal-
ity [7] encompasses the variance-based steering inequality [8], per-
mitting EPR-steering to be witnessed in more diverse systems. In
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spite of this particular example, however, improving uncertainty
relations does not necessarily improve steering inequalities, as we
shall show.

Previously [9], we showed how a state-independent entropic
uncertainty relation relating a pair of N-dimensional discrete ob-
servables, say, Q̂ and R̂ , gives rise to a formulation of a cor-
responding EPR-steering inequality between a pair of systems A
and B . In particular, given the uncertainty relation

H(Q ) + H(R) � log(Ω), (1)

: Ω ≡ min
i, j

(
1

|〈qi |r j〉|2
)

, (2)

there is a corresponding EPR-steering inequality,

H
(

Q B
∣∣Q A) + H

(
R B

∣∣R A)
� log

(
Ω B)

, (3)

where Ω B is Ω as defined in Eq. (2), but for observables on sys-
tem B . Here, H(Q ) is the Shannon entropy of the measurement
probabilities of observable Q̂ , i.e.,

H(Q ) ≡ −
∑

i

P (qi) log
(

P (qi)
)
, (4)

where P (qi) ≡ Tr(ρ̂|qi〉〈qi |). Similarly, H(Q A, Q B) is the Shannon
entropy of the joint measurement probabilities of observables Q̂ A

and Q̂ B , i.e.,

H
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Q A, Q B) ≡ −
∑
i, j
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i ,qB
j
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log
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(
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i ,qB
j
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P
(
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i ,qB
j

) ≡ Tr
(
ρ̂ AB

∣∣qA
i

〉〈
qA

i

∣∣ ⊗ ∣∣qB
j

〉〈
qB

j

∣∣).
In addition, H(Q B |Q A) is the conditional Shannon entropy, where
H(Q B |Q A) = H(Q A, Q B) − H(Q A), and all logarithms are taken
to be base 2.

Examination of (1) and (3) suggests that entropic EPR-steering
inequalities may be obtained from entropic uncertainty relations
by a trivial substitution of conditional entropies for marginal en-
tropies. Indeed, as we shall show below, when the uncertainty
bound is state-independent, this strategy is appropriate.2 In con-
trast, such a substitution is not necessarily appropriate when the
uncertainty bound is state-dependent, as we illustrate with the fol-
lowing example.

Recently, Berta et al. [10] developed an improved entropic un-
certainty relation which raises the bound on the right hand side
of (2) when the von Neumann entropy of Bob’s system described
by density operator ρ̂B is known,

H
(

Q B) + H
(

R B)
� log

(
Ω B) + S

(
ρ̂B)

. (6)

This improved uncertainty relation is a consequence of Berta
et al.’s uncertainty principle in the presence of quantum mem-
ory [10].3 With a quantum memory maximally entangled with a
system to be measured, the expected outcome of a particular ob-
servable of that system can be known with arbitrary precision by
measuring the corresponding observable of the entangled memory.
The improved uncertainty relation (6) for single systems arises as
a special case when the quantum memory is uncorrelated with the
system to be measured.

2 This point was made in a previous publication in which only state-independent
uncertainty relations were considered [9].

3 The improved uncertainty relation (6) has the appealing intuition that if the
minimum uncertainty limit when measuring a pure state is given by log(Ω B ), then
the minimum uncertainty limit when measuring a mixture of pure states is larger
by the intrinsic uncertainty of the mixture.
This state-dependent improved uncertainty relation (6) cannot
be adapted into an EPR-steering inequality by the substitution of
conditional entropies for marginal ones, as doing so would lead to
a contradiction. That is,

H
(

Q B
∣∣Q A) + H

(
R B

∣∣R A)
� log

(
Ω B) + S

(
ρ̂B)

. (7)

If Q̂ and R̂ were mutually unbiased observables, such that
log(Ω) = log(N), and the subsystems A and B were maximally
mixed, so that S(ρ̂ A) = S(ρ̂B) = log(N), we would find that the
substitution leads to the following inequality,

H
(

Q B
∣∣Q A) + H

(
R B

∣∣R A)
� 2 log(N), (8)

which is an inequality that separable states can violate. As an ex-
ample, consider the maximally correlated mixed two-qubit state,
i.e., the separable state obtained from an even mixture of the sep-
arable joint spin-z states |↑〉〈↑| ⊗ |↓〉〈↓| and |↓〉〈↓| ⊗ |↑〉〈↑|;

ρ̂ AB =
⎛
⎜⎝

0 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 0

⎞
⎟⎠ : ρ̂ A = ρ̂B =

( 1
2 0
0 1

2

)
. (9)

In this system, the alleged inequality (8) has the form

H
(
σ B

z

∣∣σ A
z

) + H
(
σ B

x

∣∣σ A
x

)
� 2, (10)

because S(ρ̂B) = 1 bit. Measurement in the Pauli σz basis, which
is the same as the eigenbasis, gives P (↑,↑) = P (↓,↓) = 0, and
P (↑,↓) = P (↓,↑) = 1

2 . Since the measurement result of σ̂ A
z is

completely correlated with the result of σ̂ B
z , the conditional en-

tropy, H(σ B
z |σ A

z ) is zero bits. Measurement in the Pauli σx basis,
which is mutually unbiased with respect to the σz basis, results in
a uniform distribution for the joint measurement probabilities, and
gives a conditional entropy, H(σ B

x |σ A
x ), of 1 bit. Since the total on

the left hand side of (10) is one bit less than the bound of 2 bits,
we would conclude that this classically correlated separable state
is not only entangled, but EPR-steerable. This is a contradiction. To
resolve this contradiction, we must examine the assumption of an
LHS model that goes into the derivation of entropic EPR-steering
inequalities.

2. The LHS model assumption with the improved uncertainty
bound

Given a pair of quantum systems A and B , we say that the pair
admits an LHS model for B if B has a well-defined quantum state
only classically correlated with A. Such a system can be considered
to be “EPR-local”, and admits the possibility that Alice is preparing
and sending systems to Bob and using her knowledge of those sys-
tems to announce “measurements” correlated to what she believes
Bob’s outcomes will be. As such, being able to rule out such an LHS
model successfully witnesses entanglement between Alice and Bob
even when Alice’s results are untrusted [2].

In [9], as well as in [7], the assumption of an LHS model for
B is enforced by requiring the joint measurement probabilities to
take the following form,

P
(
r A

i , rB
j

) =
∑
λ

P (λ)P
(
r A

i

∣∣λ)
Pq

(
rB

j

∣∣λ)
. (11)

Though this form bears striking resemblance to local hidden variable
models [3], there is the additional assumption that Bob’s measure-
ments arise from a quantum probability distribution (denoted by
subscript q), where Pq(rB

j |λ) ≡ Tr[|rB
j 〉〈rB

j |ρ̂B
λ ], and is only depen-

dent on the details of the hidden parameter λ (governing the pos-
sible state prepared by Alice). No such assumption is imposed on
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Alice’s measurements. In this situation, we assume both that Bob’s
measurements are constrained by quantum uncertainty relations,
and that his measurement outcomes are conditionally independent
of Alice’s results. With these assumptions, we are led to the LHS
constraint [7,9],

H
(

Q B
∣∣Q A) + H

(
R B

∣∣R A)
�

∑
λ

P (λ)
(

Hq
(

Q B
∣∣λ) + Hq

(
R B

∣∣λ))
.

(12)

In [9], the derivation of the entropic EPR-steering inequalities is
finished by substituting Maassen and Uffink’s bound (2) into the
right hand side of (12), giving us the steering inequality (3).

To develop an improved EPR-steering inequality, with the im-
proved entropic uncertainty relation (6), we argue that for each
value of the hidden variable(s) λ governing the preparation of
Bob’s system, the improved uncertainty relation holds,

H
(

Q B
∣∣λ) + H

(
R B

∣∣λ)
� log

(
Ω B) + S

(
ρ̂B

λ

)
, (13)

giving us the inequality,

H
(

Q B
∣∣Q A) + H

(
R B

∣∣R A)
� log

(
Ω B) +

∑
λ

P (λ)S
(
ρ̂B

λ

)
, (14)

for each LHS model given by λ and P (λ). As it stands, (14) is an
unsatisfactory steering inequality since the right hand side retains
an explicit dependence on λ. Instead, we desire an inequality that
does not depend on λ, and which, when violated, rules out all pos-
sible LHS models for Bob. In other words, we need to determine a
minimal constant �,

� ≡ min
LHS

∑
λ

P (λ)S
(
ρ̂B

λ

)
, (15)

which, with log(Ω B), gives the smallest possible sum of condi-
tional entropies that an LHS model for Bob can have;

H
(

Q B
∣∣Q A) + H

(
R B

∣∣R A)
� log

(
Ω B) + �. (16)

When violated, (16) successfully rules out all LHS models for Bob,
demonstrating EPR-steering.

In the following arguments, we show that � must be zero.
From there, we see that this particular state-dependent improve-
ment to the uncertainty relation (6) has no effect on the associated
steering inequality (3).

Consider that the sum being minimized in � is a weighted
sum of von Neumann entropies, S(ρ̂B

λ ), of the states Bob is receiv-
ing from Alice. These entropies, like all von Neumann entropies
must take values between zero and log(N). Since Alice is free to
send any distribution of states ρ̂B

λ to Bob, the weighted sum of
entropies can also take any value between zero and log(N), the
lower limit being when Alice is sending to Bob a distribution of
pure states (with zero von Neumann entropies). Thus in order to
have a bound which when violated, rules out all possible LHS mod-
els for Bob, � must be zero. Knowing this, log(Ω B) remains the
lower bound for witnessing EPR-steering through (3), even when
the state ρ̂B can be determined through the use of a quantum
memory.

3. Using state information to improve steering inequalities

Though the previous state-dependent improved entropic uncer-
tainty relation (6) did not yield an improved EPR-steering inequal-
ity, it is straightforward to show that one can use information
about the state of a quantum system to improve one’s ability to
witness EPR-steering. To explore this, we note that uncertainty
relations can be defined as any physically imposed constraint on
measurement probability distributions. Most uncertainty relations
are lower bounds on measurement uncertainties, but it is also pos-
sible to bound measurement uncertainties from above [11]. As
explored in [9,12], upper bounds on measurement uncertainties
are used to develop symmetric steering inequalities4 in terms of
the mutual information, which is defined for discrete observables
as:

H
(

Q A : Q B) ≡ H
(

Q A) + H
(

Q B) − H
(

Q A, Q B)
, (17)

and for continuous observables as:

h
(
xA : xB) ≡ h

(
xA) + h

(
xB) − h

(
xA, xB)

. (18)

Note that for continuous observables, the entropies h(xA), h(xB),
and h(xA, xB) are differential entropies [13], where

h(x) ≡ −
∫

dxρ(x) log
(
ρ(x)

)
, (19)

and ρ(x) is the probability density of continuous random vari-
able x.

In [9], we used the fact that the discrete entropy of an N-di-
mensional system is no larger than log(N) to develop symmetric
EPR-steering inequalities using the discrete mutual information.
From the conditional steering inequality (3), we developed the
symmetric steering inequality,

H
(

Q A : Q B) + H
(

R A : R B)
� max

i={A,B}
log

(
N2

Ω i

)
. (20)

For continuous observables, however, there is no known state-in-
dependent upper limit to the entropy. We can attempt to derive
a symmetric EPR-steering inequality in the same fashion for con-
tinuous variables by subtracting Walborn et al.’s [7] conditional
entropic steering inequality,

h
(
xB

∣∣xA) + h
(
kB

∣∣kA)
� log(πe), (21)

from the sum of marginal entropies h(xB) + h(kB), but since this
sum of marginal entropies is unbounded for continuous variables,
the resulting sum of mutual informations, h(xA : xB)+h(kA : kB), is
also unbounded. However, by using additional information about
the state of the system, we can form an upper bound.

To find an upper bound for the sum of mutual informations, we
use the fact that knowledge of measurement statistics allows one
to further constrain the measurement probability distributions. In
particular, we can bound from above the differential entropy h(x)
if we know the variance σ 2

x [5,13], so that

h(x) � 1

2
log

(
2πeσ 2

x

)
, (22)

giving us the relation,

h
(
xB) + h

(
kB)

� log(2πeσxB σkB ). (23)

Subtracting this inequality from (21) and symmetrizing gives us
the inequality

h
(
xA : xB) + h

(
kA : kB)

� max
i={A,B}

log(2σxi σki ), (24)

which we make symmetric by taking the largest bound between
Alice and Bob’s measurements.

4 Symmetric steering inequalities are steering inequalities that are symmetric be-
tween parties. As such, the violation of a symmetric steering inequality rules out
models of local hidden states for both Alice and Bob, allowing both of them to
verify entanglement even when neither of them trusts each other’s measurements
(though they trust their own).
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Incidentally, this leads directly to an experimentally tenable
symmetric steering inequality using discrete approximations to the
continuous mutual informations similar to the one in [12] by not-
ing that the mutual information between the discrete approxima-
tions of two continuous variables, (H(X A : X B)), is never more than
the mutual information between the continuous variables them-
selves (h(xA : xB)) [14].

H
(

X A : X B) + H
(

K A : K B)
� max

i={A,B}
log(2σxi σki ). (25)

4. Conclusion

We have shown that even substantially improved uncertainty
relations do not necessarily lead to improved EPR-steering inequal-
ities when these improvements are state-dependent.5 This is due
to the fact, that in order to rule out all LHS models, one must find
the lowest possible bound given by an LHS model and use that
in constructing a valid entropic EPR-steering inequality. However,
we have also shown how one can use state-dependent information
to improve capabilities of witnessing EPR-steering, and have devel-
oped the symmetric steering inequality (24) as a result. In addition
to finding this lowest possible bound for Berta et al.’s improved
uncertainty relation (6), we’ve also shown how to find this lowest
possible bound in general. This will permit future improvements
to uncertainty relations to be easily incorporated into existing EPR-
steering inequalities [9]. Furthermore, we’ve shown why additional
consideration must be taken in developing EPR-steering inequali-
ties from state-dependent uncertainty relations.
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