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Extracting an entanglement signature from only classical mutual information

David J. Starling,1 Curtis J. Broadbent,1,2 and John C. Howell1
1Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

2Rochester Theory Center, University of Rochester, Rochester, New York 14627, USA
(Received 26 April 2011; published 6 September 2011)

We introduce a quantity which is formed using classical notions of mutual information and which is computed
using the results of projective measurements. This quantity constitutes a sufficient condition for entanglement
and represents the amount of information that can be extracted from a bipartite system for spacelike separated
observers. In addition to discussion, we provide simulations as well as experimental results for the singlet and
maximally correlated mixed states.
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I. INTRODUCTION

Mutual information and the Shannon entropy were first laid
out in Shannon’s seminal 1948 paper [1] and have since fueled
research in many areas of classical [2] and quantum informa-
tion theory [3–5]. Although quantum information theory has
many analogies to its classical counterpart, it relies upon the
density matrix formalism and von Neumann entropy, rather
than on probabilities and the Shannon entropy. It is for this
reason that the information capacity of quantum systems can
exceed that of classical systems in some practical applications,
such as dense coding [6,7]. Quantifying quantum correlations
is therefore critical to understanding when and how they may
be used advantageously in information processing tasks.

To determine the extent to which a system exhibits quantum
correlations, one can consider the “quantum excess” expressed
as the quantum discord [8–10]. The quantum discord can be
understood as follows. There exist two, classically equivalent
definitions of mutual information: I , which is based upon joint
measurements, and J , which is based upon conditional mea-
surements. In the quantum framework, these two definitions
are not equivalent. The excess of mutual information predicted
by I relative to J is what is known as the quantum discord δ.
A nonzero value of δ is an indication of nonclassicality, but
not an indication of entanglement [10,11]. For this reason,
it is clear that the quantity J—in both the classical and
quantum frameworks—represents only the classical part of the
correlations between two parties. It has also been shown that a
nonzero discord (not entanglement) is sufficient for quantum
speedup [9] and sophisticated quantum searches [12,13]; we
therefore consider the effect of entanglement on classical
mutual information.

In what follows, we show how to identify nonclassical
correlations in a quantum state using only Shannon entropy.
In Sec. II, we summarize the various descriptions of mutual
information from a measurement point of view and then show
how to extract an entanglement signature by summing J taken
from measurements (see Fig. 1) in three mutually unbiased
bases. This sum constitutes a sufficient condition for the
entanglement of a state. This recently defined quantity bears
some resemblance to Ref. [14], where the use of six states
offers an improvement over the so-called Bennett and Brassard
1984 (BB84) quantum cryptographic protocol [15]. Similarly,
there has been related work on the geometry of spin vectors
to quantify the entanglement of a large number of photons

[16,17]. In Sec. III, we compare a variety of entangled states by
correlating concurrence [18], an entanglement measure, with
the aforementioned sum. In Sec. IV, we provide experimental
data from spontaneous parametric down conversion (SPDC).

II. THEORY

Mutual information is a measure of how much information
a random variable A, with probability distribution p(a), has
in common with another random variable B with probability
distribution p(b); the joint probability distribution is written as
p(a,b). The classical mutual information can then be expressed
by

IC(A,B) = H (A) + H (B) − H (A,B), (1)

where

H (A) = −
∑
a∈A

p(a) log p(a) (2)

is the marginal Shannon entropy of the random variable A and

H (A,B) = −
∑
a∈A

∑
b∈B

p(a,b) log p(a,b) (3)

is the joint Shannon entropy of A and B. All logarithms are
taken base 2 so that H is measured in units of bits. A classically
equivalent definition of IC follows from Baye’s rule [2]:

JC(A,B) = H (A) − H (A|B), (4)

where H (A|B) is the conditional entropy, computed as

H (A|B) = −
∑

a∈A,b∈B

p(a,b) log
p(a,b)∑

a∈A p(a,b)
. (5)

The conditional entropy is an average measure of how
uncertain we are about the random variable A given the
knowledge of random variable B. In the context of optics,
the random variables may represent the results of polarization
measurements, say a ∈ A = {h,v}, for horizontal and vertical
directions, respectively.

The quantum mutual information is given by

I (ρ) = S(ρA) + S(ρB ) − S(ρ), (6)

where S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy, ρ =
ρAB is the composite density matrix of the two subsystems,
and, e.g., ρA is the density matrix for subsystem A found by
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FIG. 1. (Color online) Entangled photons are generated by two
bismuth borate (BiBO) nonlinear crystals in two spatial modes (1 and
2). The down-converted photons are frequency filtered (F) and then
analyzed in polarization (A1 and A2) before detection and correlation.
The physical design employs collinear down conversion and a 50:50
beam splitter to separate the two photons.

tracing over the states of subsystem B. Due to the subadditivity
of S, the entropy of the joint density matrix ρ is always less than
or equal to the sum of the marginal entropies, S(ρA,B ) [19].

To motivate the quantum and classical forms of conditional
mutual information [11], consider a complete projective
measurement {�B

b } performed on subsystem B of the quantum
state ρ. The expression for the measured state is simply

ρ ′ =
∑

b

�B
b ρ �B

b , (7)

where the sum extends over the whole space of subsystem B.
Since the von Neumann entropy reduces to the Shannon en-
tropy after projective measurements on ρ, it is straightforward
to verify that

I (ρ ′) = J (ρ){�B
b } := S(ρA) − S

(
ρ
∣∣{�B

b

})
, (8)

where we define the conditional entropy as

S
(
ρ
∣∣{�B

b

}) =
∑

b

p(b)S(ρb), (9)

ρb = �B
b ρ �B

b

Tr
[
ρ �B

b

] , (10)

and p(b) = Tr[�B
b ρ]. We can then identify the right hand

side of Eq. (8) as the quantum definition of conditional
mutual information described, for example, in Ref. [11] [their
Eq. (11)].

If we also measure subsystem A with a complete projective
measurement {�A

a }, we find that

ρ ′′ =
∑

a

�A
a ρ ′ �A

a =
∑
a,b

p(a,b) �A
a �B

b , (11)

where p(a,b) = Tr[�A
a �B

b ρ]. It is also straightforward to
verify that

I (ρ ′′) = JC(ρ){a,b} := H (A) − H (A|B), (12)

where the subscript {a,b} indicates the measurement bases. We
note that I (ρ ′′) is equivalent to the classical mutual information
IC defined in Eq. (1).

For a bipartite, two-state system, J (ρ){�B
b } is bounded by 1

bit. Since the choice of orthonormal projectors {�B
b } can affect

its value, we typically consider the maximum of this quantity,
optimized over all possible orthonormal projectors:

J̃ (ρ) = max
{�B

b }

[
J (ρ){�B

b }
]
. (13)

This form of mutual information can only account for the
classical correlations of the state; this is apparent, for instance,
in the definition of the quantum discord, which is a measure of
nonclassical correlations in a quantum state: δ = I (ρ) − J̃ (ρ).
Nevertheless, we demonstrate how J and JC for two qubits can
lead to significantly different predictions between entangled
and separable states when summed in different bases.

Let us consider a maximally entangled state ρ. For such
a state, the conditional entropy is zero, which can be seen
by noting that ρb is pure for all b [so S(ρb) = 0] when ρ

is measured projectively in any basis {�B
b }. Additionally,

the marginalized state ρA is fully mixed, giving S(ρA) = 1.
Therefore, the measured mutual information in Eq. (8) is
maximal in any basis. However, for separable states, 0 �
J � 1, depending on the measurement basis. To exploit this
difference, we consider the sum

MJ = J (ρ){�B
b } + J (ρ){�B

b′ } + J (ρ){�B
b′′ }, (14)

where the set {b,b′,b′′} denotes three mutually unbiased bases.
For example, with the polarization states of light (e.g., |H〉,
|V〉), one set of mutually unbiased bases includes analyzers at
b = {h,v}, b′ = {d,a}, and b′′ = {r,l} for linear polarizations
horizontal (h), vertical (v), diagonal (d), and antidiagonal (a),
and circular polarizations right (r) and left (l). This is the
standard set of bases considered in this paper. In the following
section, we will explain the motivation behind this choice and
demonstrate why this quantity is useful from an experimental
point of view.

We can also compute a similar sum using the classical
definition [Eq. (4)]:

MJC
= JC(ρ){a,b} + JC(ρ){a′,b′} + JC(ρ){a′′,b′′}. (15)

In general, MJ �= MJC
. Furthermore, the choice of {a,a′,a′′}

and {b,b′,b′′} as well as the ordering can drastically change the
values of MJ and MJC

. However, in practice, experimenters
will typically agree ahead of time on their measurement
bases; therefore, by calculating MJC

, they can determine how
much information they can extract from their qubits with a
predetermined basis.

III. EXAMPLES AND SIMULATIONS

A few simple examples are as follows. First, consider a
mixture of the singlet state ρs and the maximally correlated
mixed state ρm = (|HV〉〈HV| + |VH〉〈VH|)/2, given by

ρM (p) = pρs + (1 − p)ρm, (16)

where 0 � p � 1. Using the three mutually unbiased bases
listed above for both subsystems, we find that MJ = MJC

.
We also find that MJ has a value of 1 (in the case of a
separable state, p = 0) and a value of 3 (in the case of a
maximally entangled state, p = 1), such that 1 < MJ < 3
for all other p. We note here that this range depends on the
measurement basis. The cases of p = 0 and p = 1 have been
studied experimentally and are discussed below.
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FIG. 2. (Color online) Parametric plot of the mutual information
sum MJ and concurrence for the examples given in the text. Note
that, for a given concurrence, MJ for ρM and ρ(β) (they fall on the
same curve) is uniformly higher than for the other three states. The
points shown for the two-parameter state ρ(a,b) are evaluated for a
random, uniform sample of a and b.

The second example we consider is the Werner state
[20], given by ρW (p) = pρs + (1 − p)1/4, where 1 is the
4 × 4 identity and 0 � p � 1 as before. We again find that
MJ = MJC

and that, for a given concurrence, MJC
for state

ρM (p) (using these measurement bases) is uniformly higher
than for the Werner state. This can be seen in Fig. 2 where
we plot MJC

and concurrence parametrically for both ρM (p)
and ρW (p). The reason ρM has a higher MJC

than ρW is due
to the maximum correlations that exist for the former in the
{h,v} basis. In the other two bases, the correlations are equal
for these two states. That is, ρM is optimized for the {h,v}
basis without degradation in the other bases when compared
to ρW . Furthermore, each term of MJC

in Eq. (14) is equal for
the Werner state; therefore, for some applications in quantum
information, ρM (p) may prove more useful than the Werner
states, despite the high amount of entanglement possible in
ρW (p).

In Fig. 2 , we also include values for the α and β states ρ(α)
and ρ(β), which represent the upper and lower boundaries
respectively in the discord-entanglement plane, as well as the
two-parameter states ρ(a,b), which contain ρ(α) and ρm [21].
We choose a and b uniformly from their specified ranges and
find that MJC

for ρ(a,b) is less than or equal to MJC
for ρ(α).

From Fig. 2, we can easily see a correlation between
concurrence and MJC

for many different states: the larger
the entanglement, the larger the value of MJC

. This is not
surprising since MJC

is measure of the mutual information
(or correlations) across multiple unbiased bases. Additionally,
given two states with equal concurrence, we believe that a
larger value of MJC

is, in general, more useful for two observers
working in multiple, predetermined bases.

We contend that separable states have MJ � 1 and MJC
�

1, noting that the measurement bases are mutually unbiased.
However, due to the large state space created by the basis
ambiguity, we rely on Monte Carlo simulations to justify this
claim. We generate random physical density matrices using the

method described in Ref. [22]. In particular, we first generate a
random, 4 × 4 diagonal matrix ρ with diagonal elements given
by

ρ11 = 1 − ξ
1/3
1 , (17)

ρkk = [
1 − ξ

1/(4−k)
k

] (
1 −

k−1∑
i=1

ρii

)
, (18)

for k = {2,3}; ρ44 is determined by Tr[ρ] = 1. The three
random numbers {ξk} are uniformly distributed on the interval
(0,1). We then rotate this diagonal matrix to a new basis by
generating a random unitary matrix U using Eqs. (3.1)–(3.3) in
Ref. [23]. This gives ρ̃ = Uρ U †; the set of matrices formed in
this way sample the set of all density matrices uniformly [22].

We generated 106 such matrices and calculated MJ and
MJC

for each in 100 random, mutually unbiased bases. We
separated the states into two groups: separable and entangled.
For entangled states, we found that MJ ∈ (0.05,2.59) and
MJC

∈ (0.00,2.22), with average values of MJ = 0.43 and
MJC

= 0.35 (maximized over bases and averaged over all ma-
trices) and standard deviations of 0.22 and 0.20, respectively.
Similarly, for separable states, we found that MJ ∈ (0.00,0.80)
and MJC

∈ (0.00,0.73), with average values of MJ = 0.14
and MJC

= 0.11 and standard deviations of 0.09 and 0.07,
respectively. We found that 67.3% of all states were separable
and that MJ � MJC

. Based on the results of these simulations,
we are confident that MJ and MJC

are bounded by 1 for
separable states. Therefore, MJ (ρ) > 1 and MJC

(ρ) > 1 are
sufficient conditions for the entanglement of a state.

It is interesting to note that it is trivial to construct a
similar measure summed over only two mutually unbiased
bases. Such a sum also results in an entanglement signature
for the very same reasons listed above. Therefore, only eight
measurements are required experimentally. Compare this to
the standard Clauser, Horne, Shimony, and Holt (CHSH)
inequality [24], for which 16 measurements are required. It
is therefore experimentally faster to perform these mutual
information sums, with the caveat that the experimenter may
choose an inappropriate set of bases for detection, thereby
failing to violate the bound.

IV. EXPERIMENT

Let us consider two photons created during degenerate,
collinear, type-I SPDC using a two-crystal geometry [25],
where the optic axis of each crystal is aligned in perpendicular
planes. The photons are described by the joint density
matrix ρ = ρAB , where photon A (B) is in port 1 (2). In
our experimental setup, a 488 nm diode laser pumped two
3-mm BiBO down conversion crystals with a Soleil-Babinet
compensator used for walkoff compensation. Use of a 3-nm
bandpass filter restricted detection of entangled photons in a
narrow band centered at 976 nm. The down-converted photons
were separated with a 50:50 beam splitter, and the polarization
of one photon was rotated with a half-wave plate to produce a
singlet state. A maximally correlated mixed state was produced
by removing the bandpass filter.

To determine the theoretical and experimental value of MJC
,

we modified the polarization state of the photons through local
unitary operations (i.e., wave plates). Fixed polarizers and
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FIG. 3. Mutual information MJC
recorded for the maximally

correlated mixed state (hollow circles) and the singlet state (solid
circles). Points are data composed of 36 min of integration (over 12
separate measurements) for the singlet state and 48 s of integration for
the maximally correlated mixed state. The solid and dotted-dashed
lines correspond to theoretical predictions of MJC

based upon
the tomographic reconstruction [26] of the singlet state and the
maximally correlated mixed state, respectively. The error bars, which
are smaller than the points for the maximally correlated mixed state,
are calculated assuming shot noise limited detection. The dashed line
indicates the classical bound of MJC

.

variable wave plates mounted in computer-controlled rotation
stages were used as analyzers in each port. Light was collected
via multimode fibers coupled to single photon avalanche
photodiodes. Coincidence counts in a 3-ns window were
recorded with a PicoHarp 300. For each calculation of MJC

, 12
measurements were made by recording the coincidence count
rate while the angles of the analyzers were varied. The polar-
izers were fixed to pass vertical polarization. For experimental
simplicity, we measured MJC

in the aforementioned bases
(a = b = {h,v}, a′ = b′ = {a,d}, a′′ = b′′ = {r,l}) and then
rotated the angle of the half-wave plate in arm 2 through 45◦
to show a trend. For each angle, the measurement is performed

in three mutually unbiased bases. We also perform quantum
state tomography with maximum likelihood estimation [26]
in order to reconstruct the density matrix for the theoretical
calculation of MJC

.
Data was taken for a maximally correlated mixed state

(with a fidelity of 0.94) and a singlet state (with a fidelity
of 0.92 and a concurrence of 0.84). From the coincidence
count rates, MJC

was calculated and is plotted in Fig. 3 along
with the estimated values from the reconstructed state. We
see a clear violation of the classical bound for the singlet
state over a wide range of wave plate angles. However, as the
measurement moves away from the ideal bases, we find that
the value of MJC

quickly drops, demonstrating the importance
of this choice. We also note that the peak of MJC

is shifted
from 0◦ for both states; this is due to the asymmetry present
in the reconstructed density matrices.

V. CONCLUSION

In conclusion, we find that the classical mutual information
[Eq. (4)], as well as the classical part of the quantum discord
[Eq. (13)], are responsible for an entanglement signature when
summed over three mutually unbiased bases via Eqs. (14) and
(15). Although such a sum depends heavily on the choice of
bases, we believe this quantity serves a useful purpose from an
information-theoretic perspective. It is experimentally faster
and easier to extract an entanglement signature as compared
to quantum state tomography and CHSH measurements. MJ

also represents how much information two distant observers
share with a particular set of mutually unbiased bases,
therefore describing the communication channel and not just
the quantum state of the qubits. We experimentally verified
these predictions to demonstrate entanglement in our system
and found good agreement with the theory.
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[23] K. Życzkowski and M. Kus, J. Phys. A: Mathematical and
General 27, 4235 (1994).

[24] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.
Rev. Lett. 23, 880 (1969).

[25] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H.
Eberhard, Phys. Rev. A 60, R773 (1999).

[26] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys.
Rev. A 64, 052312 (2001).

032305-5

http://dx.doi.org/10.1103/PhysRevLett.78.5022
http://dx.doi.org/10.1007/BF01646092
http://dx.doi.org/10.1007/BF01646092
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.83.032101
http://dx.doi.org/10.1103/PhysRevA.83.032101
http://dx.doi.org/10.1103/PhysRevA.58.883
http://dx.doi.org/10.1088/0305-4470/27/12/028
http://dx.doi.org/10.1088/0305-4470/27/12/028
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevA.60.R773
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevA.64.052312

