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Bounding the entanglement of N qubits with only four measurements
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We introduce a measure for the genuinely N-partite (all-party) entanglement of N-qubit states using the trace
distance metric and find an algebraic formula for the Greenberger-Horne-Zeilinger (GHZ)-diagonal states. We
then use this formula to show how the all-party entanglement of experimentally produced GHZ states of an
arbitrary number of qubits may be bounded with only four measurements.
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I. INTRODUCTION

Quantum-mechanical systems can be used for real-world
applications of significant importance, including quantum
information processing [1,2], quantum cryptography [3], and
quantum metrology [4]. Many of these applications require
entanglement between more than two parties; see, e.g., [1,2].
Such systems also allow us to probe the transition from quan-
tum to classical behaviors in increasingly complex systems
[5,6]. These applications are of sufficient importance to have
prompted a number of experimental initiatives for generating
entanglement between many parties [6—13]. Additionally,
achieving quantum systems with scalable architectures con-
tinues to motivate much research.

In tandem with experimental efforts to create entanglement
in many-party systems, there has been a theoretical effort
aimed at quantifying the entanglement in many-party systems.
Of particular importance is the entanglement existing collec-
tively between all N parties of an N-party system, which we
call all-party entanglement [14] and which plays an important
role in high-precision metrology as well as other applications
[4,15,16]. All-party entanglement can best be identified via its
opposite, biseparability. A pure state |) is biseparable if it has
a pure reduced density matrix, i.e., |¥) = [¥) ® |y¥») where
|Y1) and |y) are pure states. A mixed state is biseparable if it
can be written as a sum of pure biseparable states; otherwise,
the state is all-party entangled [2,17].

Quantifying the all-party entanglement has proved to be
a challenging task. Previous studies have produced witnesses
and/or lower bounds of the all-party entanglement [18-25].
Many of these results are not well suited for use in experimental
settings because they apply only for idealized noise-free
states [22-25], require numerical methods only feasible for
few-partite systems [21], or require knowledge of the density
operator of the state under test [18,19]. The latter requirement
is a problem for multiparty systems because, in general, the
number of measurements to determine the density operator
scales exponentially with the number of parties [26]. Apart
from these methods, the measured value of witness operators
can be used to find a lower bound for the entanglement
realized in an experiment [27-30]. Nonetheless, the efficacy
of this approach for producing nontrivial lower bounds is
not guaranteed and complementary techniques are desired.
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TABLE 1. The lower bound £ of the entanglement of the states
reported in Ref. [6]. The third row is the percentage of the produced
entanglement lower bound relative to the entanglement of a GHZ
state.

No. of ions 2 3 4 5 6
Fidelity (%) 98.6 97.0 95.7 94.4 89.2
£ > 0.33 0.25 0.2 0.17 0.044
E% > 66 50 40 34 8.8

In summary, quantifying all-party entanglement remains a
challenge.

In this paper, we overcome this challenge by providing
upper and lower bounds on the all-party entanglement, bounds
that are experimentally relevant for any state and require only
four measurements regardless of the number of qubits. To
do this, we first introduce a distance measure of all-party
entanglement and find an algebraic formula for its value for a
special class of states called the Greenberger-Horne-Zeilinger
(GHZ)-diagonal states. We then use this algebraic formula to
derive upper and lower bounds on the all-party entanglement
of any state, using only four measurements. These bounds are
particularly useful for states that are close to the GHZ states.
We show that for any two states p, 0/,

EP) —=V1=F(p',p)* <E(p) < V1= F(p)? (1)

where £(p) is the value of our entanglement measure for p,
F(p’,p) is the fidelity between p and p’, and o is the closest
biseparable state to p’. When p’ is a GHZ state, the bounds in
Eq. (1) may be determined using only four measurements.

A specific example of the direct applicability of our result
is provided by results reported recently. We use Eq. (1) to
calculate a lower bound on the actual multiqubit entanglement
produced experimentally by Monz et al. [6]. The results are
given in Table I.

II. TRACE DISTANCE MEASURE

Our method starts by introducing the trace distance,
D(p,t) = %Tr(|p — 7]) [3], to define a measure of all-party
entanglement,

&(p) = min D(p,7), 2)

where BS is the set of biseparable states and |A| = v AAT. The
trace distance is symmetric in its arguments and is zero if and
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only if its arguments are equal. The benefit of this approach,
as we will show, lies in the fact that when we succeed in
evaluating the measure for a given state, we can readily place
tight bounds on the value of the measure for the states that are
close to that state. Below we establish that £(p) is a monotone
of the all-party entanglement.

To show that £(p) is an entanglement monotone, we prove
that £(p) is convex, nonincreasing under local operations and
classical communication (LOCC) and invariant under local
unitary transformations. We first address the convexity of £(p),
showing that £(p) < A1 E(p1) + A2E(p2) if p = X101 + A2 po.
If the two closest biseparable states to p; and p; are o} and o>,
respectively, then

E(p1) = D(p1,01) and E(p2) = D(p2,02). A3)
The convexity of the trace distance allows us to conclude that

ME(P1) + 12E(p2) = A D(p1,01) + A D(p2,02)
= D(Ap1 + Azp2,A 101 + A202)
= D(p,o12) = £(p), 4

where 01, = A10] + A07 is biseparable, since the convex sum
of any two biseparable states is itself a biseparable state.

To show that our measure is nonincreasing under LOCC,
we use the contractive property of the trace distance [3].
The distance between two states cannot increase under trace-
preserving quantum operations, i.e., for any two states p and

o'
D(M(p), M(p")) < D(p,p"), &)

where M is a trace-preserving quantum operation. We note
that any LOCC is a completely positive, trace-preserving map
[31]. Now if the closest biseparable state to the state p is called
o, then

E(p) = D(p,0) = D(I'(p).I'(0)) = E(T'(p)), (6)

where I' is an LOCC. Note that in the last inequality, since
o is biseparable, any LOCC operation on it leads to another
biseparable state.

Finally, we show that &£(p) is invariant under lo-
cal unitary transformations. The trace distance is invari-
ant under unitary transformations [3], therefore E£(p) =
min;cgs D(U,OUT,U‘L'UT). If U is a local unitary transfor-
mation, then v/ = UtU" represents a one-to-one mapping
between biseparable states, and we can write

E(p) = min D(UpU',7") = EWUpUT). (7

Thus, £ is invariant under local unitary transformations. This
completes our proof that £ is an entanglement monotone.

Next we show that if the value of the entanglement measure
is known for some state, one can use that value to bound the
entanglement of other states. Later we will find the value of
E(p) for all GHZ-diagonal states.

Let us assume that we have a state p and another state p’
for which we know the value of £(p’). Then there exist states
o and o', the closest biseparable states to p and p’, for which
E(p) = D(p,o0) and E(p’) = D(p’,0”). Consequently, we can
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FIG. 1. (Color online) A graphic visualization of the bounds of
entanglement. The red region represents the set of biseparable states.
The yellow circle represents the set of states that are closer to p’ than
D(p,p’).

conclude that

E(p) = D(p,0) < D(p,0")
< D(p,p")+ D(p',0") = D(p,p" )+ E().  (8)

The last inequality is the result of the triangle inequality for
our distance norm. The graphic picture in Fig. 1 can be helpful,
although our argument is purely algebraic. We can also find
a lower bound for £(p) by employing the reverse triangle
inequality:

E(p) = D(p,0) = D(p',0) — D(p,p")
> D(p',0") — D(p,p") = E(p") — D(p.p"). (9)

Consequently, knowledge of £(p") allows us to bound the
entanglement of p,

1E(p) — E(p)I < D(p,p"). (10)

In fact, the upper bound in (10) can be tightened by noting that
if o’ is known, then

E(p) < D(p,o’) < E(p") + D(p,p), (1)

as shown graphically by the solid line in Fig. 1.
Finally, using the relationship between distance and fidelity

(31,
D(p’,p) < V1 = F(p',p)?, (12)

together with Egs. (10) and (11), we prove Eq. (1). The above
bounds will be useful provided we can find another state close
enough to p such that the bounds in Eq. (10) are nontrivial. In
deriving the above bounds, we have not made any assumptions
about the two states p and p’. Consequently, the value of the
above bounds, and whether or not they are nontrivial, depend
only on the distances (or fidelities) between states p and p’. For
example, if D(p,p") < £(p’), the lower bound of entanglement
becomes a nontrivial positive value. A similar argument can
be made for the upper bound. Next we will find the value of
our measure for GHZ-diagonal states explicitly. This allows
us to find bounds on the all-party entanglement of any state
using its distance to a GHZ-diagonal state.
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III. ENTANGLEMENT OF GHZ-DIAGONAL STATES

We will now derive the value of £(p") for the so-called GHZ-
diagonal states, which are mixtures of GHZ states, by finding
the closest biseparable state o’ to such states. We start with a
definition and a lemma for N-qubit X states [32], i.e., the class
of N-qubit density matrices whose nonzero elements, in some
orthonormal product basis, are diagonal and/or antidiagonal.
These matrices only have N-party coherences and tracing over
any set of parties leads to a diagonal density matrix [33,34].

Lemma. The closest biseparable state to an X state is itself
an X state.

Proof. If we take a density matrix Y and map it to an X
state, X = x(Y), by setting every element to zero except for
the diagonal and antidiagonal elements, it is shown in the
Appendix that x is an LOCC mapping. Let us assume the
closest biseparable state to X, called Xy, is not itself an X
state. The contractive property of the trace distance implies
that

D(X, Xps) 2 D(x(X), x(Xvs)) = D(X, x (Xps)).  (13)

Also note that since Xy is biseparable, so is x(Xps). Thus, if
Xy 1s not itself an X state, we can find a biseparable X state
that is closer to X than X,s. This is in contradiction to the
assumption that Xy is the closest biseparable state to X. Thus
we can conclude that the closest biseparable state to an X state
is itself an X state.

Now we determine the closest biseparable state to the
following X state:

ag 21
by 22
% bn Zn
Xy = o b . (14)
23 by
ZT b]

where n =2""1, and we require |z;| < b;, |z1| < +/a1bi,
and a; + by +2)_; b; =1 to ensure that )A(N is positive and
normalized. We further assume that |z;| > |z;|. The all-party
concurrence of an N-qubit X matrix is given by [25]

C(Xy) = 2max{0,]z)| — wi}, 5)

where, for the X states of the form in Eq. (14), w; = Z?# bj.

Notice that in the above X state, if a; = by, X N becomes
a GHZ-diagonal state. Below, we will show that the closest
biseparable state to Xy has identical elements except for z;,
which is replaced with w;z;/|z;|. Consequently, the value of
the all-party entanglement for X states of the above form is
given by

EXn) = max{0,|z1| — wi}. (16)

In the following, we further assume z; € R and z; > 0 since
we can always change the phase of the basis to achieve this, and
the distance is invariant under local unitary transformations.
Furthermore, we assume z; = w; + € > w;, otherwise X N 1S
a biseparable matrix.
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Let us parametrize the closest biseparable state to Xy to be
2=Xy+A:

(Sl+ V) — €
8 %)
A 3ty
8= ooy
V3 8y
v —€ Sy
(17)

The X form of the difference matrix implies that D()A( N, =
ID1]l + -7y 11Di], where [|A|| = 3Tr|A| and

85 vi—e 5w
Dl_( Vi —€ 8y » Di= vi 87 )7 (18)

First we turn to the ||D;|| contribution. Taking advantage of
the triangle inequality for the eigenvalues of D, leads to

D11 > 367 = 872 + 4l — vil? > |e — Re(v)l.

Note that the above inequality implies that Re(v;) > 0 since
we assumed D(Xy,3) < €. Similarly, using the triangle
inequality for the eigenvalues of D;, we can show that
IID;|| = 318} 4+ 8; |. Now we define §; = 3(8;" +8;). We
conclude

S48 > 3+ 870)B +67) 2wy +wi]
i>1 i>1

> w; + Re(v)). (19)

The second-to-last inequality arises from applying the condi-
tion of biseparability for the element >, ,,. Subtracting w,
from the left-hand side and right-hand side leads to

D UDi =) 8 = Re(vy). (20)

i>1 i>1

Thus we conclude that D(Xy,$) = [|Dy|| + Y1, |IDi]] > e.
One can readily check that this inequality is saturated if 3’s
elements are all identical to X N, except for z; which is replaced
with w;. This completes our proof.

IV. EXPERIMENTALLY ACCESSIBLE BOUNDS

Now that we have proven Eq. (16), we need only show that if
p’ is a GHZ state, then F(p,p’) and F(p,0’) can be computed
with four measurements regardless of the number of qubits.
That F(p,p’) depends only on the populations and coherences
P1.1> P1,2n, and pa, 2, and therefore requires only four measure-
ments has been shown previously [6,10]. From our previous
analysis, we find that the nearest biseparable state to the GHZ
stateiso’ = (|0---0){(0---0] +|1---1)(1---1])/2 for which
it is easy to see that the fidelity F(p,o0”) also only depends on
the populations and coherences p1,1, 01,20, and P2, 2.

In deriving the above experimentally more accessible
bounds, we took advantage of the fact that the fidelity between
any state and a GHZ state depends solely on three density
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matrix elements, i.e., 011, P1.24, and po,2,. An identical
argument can be made even for GHZ states that are not of
equal weighting,

|[¥) = cos6]0,0,,---,0) +sinf|1,1,--- ,1). 21
Thus the lower bound of the entanglement can be improved
using a simple optimization,
VI=F@,ly)?], (22

1y .-
Elp) > max [§| sin260| —

where the fidelity reads

F(p,|¥))* = p1,1€08> 0 + po 00 5in> 0 + Re(py,2,) sin 26.
(23)

V. CONCLUSION

More than a century after the seminal work of Schmidt [35],
and in spite of important contributions from many, including
Werner [36] and Wootters [37], to the theory of entanglement,
the question of how to determine and quantify the entangle-
ment of a given state remains open. Of particular importance
is determining the all-party entanglement among many qubits
in an experimental setting. This is a difficult problem because
most presently available techniques are not well suited for
experimentally produced systems in which noise is always
present. Additionally, the exponential scaling of measurements
required to determine the state of N qubits makes state-based
approaches very inefficient. Finally, witness-based techniques
for quantifying the entanglement do not currently provide
upper bounds and may not result in nontrivial lower bounds.

In summary, we have introduced a technique to solve
this problem by using a distance measure to derive bounds
on the all-party entanglement for an arbitrary number N of
qubits. We derived an algebraic formula for the all-party
entanglement of GHZ-diagonal states and then used this
formula to derive easily calculable upper and lower bounds
to the all-party entanglement of any experimentally produced
state based on the results of just four measurements. This is a
particularly promising technique for establishing the bounds
of the produced entanglement when N is large.

As mentioned in the beginning, we used our lower bound to
quantify the nonzero all-party entanglement that was produced
in arecent experiment [6]. We used the fidelities reported on the
creation of GHZ states of up to 14 ions and established lower
bounds on the actual all-party entanglement for states with
up to six ions. The fidelities of states with larger numbers of
qubits are not big enough to establish nontrivial lower bounds.
Regardless, these states are all-party entangled as reported by
the authors. While upper bounds appropriate to the experiment
in [6] could also be computed from two of the populations
and one of the coherences using our approach, the required
populations were not reported.
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APPENDIX

Here we prove that yx, i.e., the mapping that takes any
density matrix to its X part, is an LOCC mapping. An algebraic
characterization of X states was presented by Vinjanampathy
and Rau [33]. They have shown that any N-qubit X state can
be written in the following form:

2N

Z(s,s +riRy),

=0

(AL)

where so = 1, and s;,r; are real. To define S; and R;, first
note that any generator of SU(2Y) is a direct product of N
generators of SU(2). §; is the operator obtained by replacmg,
in the binary representation of i, 0’s with / and 1’s with &..

is the operator that is obtained similarly, but by replacing 0 S
with 6, and 1’s with &,. For example,

(A2)

N

Let us define the sets S = U2 _l{S} and R = Ul2 gl{R}
The set SUR is closed under multiplication as well as
commutation [33]. Furthermore, in S there are 2V~! operators
whose commutation with every element of S U R vanishes.
These are elements of S with an even number of &,’s in their
multiplication. We name this subset C. Then the quantum
operation x, which takes each N-qubit density matrix and
returns its X part, is given by

1 A a4
x(0) = 55— D SinS]. (A3)

SieC

It immediately follows that for any entanglement monotone,
the entanglement of x(p) is always smaller or equal to the
entanglement of p. The lower bound of all-party concurrence
that was derived by Ma et al. [19] can thus be understood as a
special case of this inequality.

Below we prove that the mapping given in Eq. (A3) returns
the X part of any density matrix. We do so by showing that
every generator of SU(2"), which is not in S U R, commutes
with half of the elements of C and anticommutes with the
other half. Since every N-qubit density matrix can be written
as a linear sum of generators of SU(2Y), the coefficients of
generators in S U R survive the sum while the coefficients of
the generators outside S U R cancel out, leaving only the X part
of the density matrix. The special case of N = 2 is discussed
in [38].

Let us first introduce two sets & = {1,6.}, n = {6,,6,}.
Every generator of SU(2") is given by a direct product of
N operators from either n or £&. We consider the arbitrary
generator

N
A=Q)a. (Ad)
j=1

062331-4



BOUNDING THE ENTANGLEMENT OF N QUBITS WITH ...

where 4 is eitherin & or . We also choose an arbitrary element
inC,

N

B= (g) b;, (A5)
j=1

where b ; is either 6; or 1 and there are an even number of

Bj for which b j = 6. It is straightforward to show that the
commutator and anticommutator have the form

N N
AB+BA = [ R ab; | + | X bja; (A6)
j=1 j=1
We note that 5j&j = —&jl;j only if 4; € n and l3j =6, and
b;a; = a;b; otherwise. Consequently, we find that
AB + BA = AB[1 £+ (—1)7], (A7)
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where g is the total number of times @; € n and b j = 6. Thus,
A and B commute if ¢ is even and they anticommute otherwise.
Therefore, we need only count the number of operators in C for
which ¢ is even for an arbitrary operator A. This is simpler than
it seems. Let us assume that there are a total of M 4; € n. The
total number of ways an even number of &, ’s can be distributed
among two sets, one of size M and one of size N — M, with
an even number in each is given by

2 (@)(5")=

i,j=0

(A8)

including the case of zero o,’s which represents the identity.
The set C has 2V~! elements and thus A anticommutes with
the other half of C. Note that this breaks if M =0 or N = 0.
But, in that case, A € S U R and all elements of C commute
with A. This proves that Eq. (A3) is an LOCC mapping.
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