Playing with T2K ND280 selections

Towards a better separation of resonant/multi-pi/DIS?

ROCHESTER

Clarence Wret Rochester meeting 13 July 2020

Introduction

- Exciting path ahead for T2K; starting to focus on π model
 - Multi-ring samples incoming in T2K oscillation analysis (1 ring from lepton, 1 ring from pion)
 - Multi-GeV, multi-ring samples in the joint T2K+SK atmospheric oscillation analysis
 - T2K-NOvA joint fit may require better understanding of QE/2p2h/ RES fractions, energy scaling, nuclear target differences...
- We know our $1\pi,$ multi- π and DIS models need love
 - From external data (e.g. MINERvA) and ND280 selections
- Working towards the future ND280 fit, we will likely have to provide justifiable constraints using
 - Pion production selections
 - Pion kinematics
 - Proton kinematics

Overview

- Analysis bins in p_{μ} , $\cos\theta_{\mu}$ splits into pion multiplicity
 - Only CC selections: looks for correctly bent highest momentum track, required to have a muon PID in TPC
 - CC0 π : there are no pions, any nucleons
 - CC1 π : 1 π with opposite charge to muon (e.g 1 π ⁺ in v_µ mode)
 - CCOther: >1 right-signed π , >0 π^0 , >0 wrong-sign π
- The fit decreases uncertainty on events at SK from ~14% to ~3%
- Wanted to refine these further to get better model constraints
 - e.g. CCOther contains single pion via resonance, multi-pi, DIS: not great for constraining individual systematics
- Played around with these, see if we can build a different ND selection
 - Chopping up CCOther; CC1 π with at least one proton; CCQE with at least one proton

First, CCOther

- Wanted to see what TPC π^0 separation could do in CCOther
- Plotted in true hadronic mass (W)
 - Allows for by-eye separation of CCQE, Delta-dominated resonance contributions, multi-pi and DIS
- Wanted to try to "isolate" two processes from the current CCOther selection
 - π^0 production via resonance
 - multi-pi/DIS "enhanced" selections

8

First, CCOther

- Wanted to see what TPC π^0 separation could do in CCOther
- Plotted in true hadronic mass (W)
 - Allows for by-eye separation of CCQE, Delta-dominated resonance contributions, multi-pi and DIS
- Wanted to try to "isolate" two processes from the current CCOther selection
 - π^0 production via resonance
 - multi-pi/DIS "enhanced" events

CCOther by-mode

• Without any additional cuts, CCOther is a mishmash of a lot of physics: let's separate them

CCOther and protons Could $CC1\pi^{0}$ isolation be better by including proton?

ProtCandReco_Corr_Abs {(Selection == 5 || Selection == 21)&&ProtCandReco_Mom[2]>-998}

• Proton threshold about p=450 MeV/c

CCOther and protons

- Proton requirement separates CCQE component
 - Largely from high proton momentum threshold
- Separates CC1π+1n contribution fairly well

CCOther summary

- Simply counting up the pions seems to work
- Separating out single $\pi^{\scriptscriptstyle 0}$ events from wrong-sign and multiple pion events
- Including proton information helps isolate further, but leads to low statistics in >0p selection
- Want to also include FGD iso and Michel tag into the pion counting: small effect though
- Check biases in the true PDG of proton candidates
- Look at sensitivity studies to fitting the model parameters

$CC1\pi^+$ with protons

Clarence Wret

 The CC1π⁺ selection is a mix of resonant, CCQE/2p2h and multi-pi

$CC1\pi^+$ with protons • The CC1 π ⁺ selection is a mix of resonant, CCQE/2p2h and multi-pi

$CC1\pi^+$ with protons

- The CC1 π +1p final state is special in bubble chambers
 - Large Δ^{++} (pure $I_{3/2}$) contributions with barely any other resonances and minimal non-resonant background interference

$CC1\pi^+$ with protons summary

- Including proton track presence gives better separation of interaction modes as anticipated
- But there is still room for improvement
 - Including proton kinematics in the separation, or vertex activity (could separate coherent contribution perhaps?)
 - Including proton kinematics in fitting variable
- Happy to pursue this basic selection update to see improvements in e.g. likelihood scans and parameter sensitivity
 - However, don't have huge amount of free time, so am very happy to work in group with someone

$CC0\pi$ with protons summary

- Looking purely at the presence of proton tracks seems too crude for CCOπ, due to high proton momentum threshold
 - Most CCQE **should** have protons, but most CCQE events end up in Op selection \rightarrow due to low momentum of proton
 - Most 2p2h **should** have protons, but most 2p2h events end up in Op selection \rightarrow due to low momentum of proton(s)
 - Resonant sometimes has protons → Higher E_v → Higher proton momentum → More often detected
 - Provides some separation of CCQE and resonant
- This seems to indicate vertex activity is central to successfully separating the CCQE/2p2h interaction mode contributions?
 - No easy way to do this currently
- Can test statistical power of the two samples in sensitivity studies

The elephant in the room

- Proton interaction systematics!
- Include "with proton" and "without proton" samples mitigate events migrating in/out of entire selection
 - Study migration between "with" and "without" proton is accounted for
- Secondary interaction (SI) systematic handled, will evaluate the size of this systematic on the selections
- Proton final state interaction (FSI) systematic handled in NEUT, but not presently included (not enough pass-through information in our production)
 - Wait for new production to evaluate this? Would prefer not...
 - Hash something out in the meantime comparing generators, or just doing mean free path

Summary

- Naive first pass glance at slicing up ND280 selections included in T2K's ND280 fit
- CCOther and CC1π⁺ updates seem reasonably easy for the additionally physics gain (I hope...)
 - Dedicated CC1 π^0 selection from CCOther
 - Include proton tag to separate CC1 π^+
- CC0 π benefits too, but relatively high momentum threshold of ND280 leads to poor CCQE/2p2h/resonant separation
 - Needs further studies, e.g. proton momentum slices, vertex activity

Thanks