Single pion uncertainties for T2K's oscillation analysis

Clarence Wret Rochester meeting 19 July 2021

Introduction

- Single pion production uncertainties revised
 - Yet another pion kinematics uncertainty
 - $CC1\pi^+/CC1\pi^0$ scaling
 - Low Q² suppression

- T2K is introducing new "2 ring" selections this year
 - One ring from muon, one ring from pion above Cherenkov threshold
 - One ring from muon, one below-Cherenkov pion (Michel tagged)
- \rightarrow Large number of 1π events into next oscillation analysis

- Higher $E_\nu \to$ smaller oscillation effect, but will contribute to the constraint at the maximum
- Separately, joint T2K-SK atmospheric fit needs robust single pion uncertainty if we want to constrain sub-GeV atmospheric samples

- Working on uncertainties that change the pion kinematics predominantly
- Focusing on when a resonance decays into πN system

- Previously showed that the number of resonances included in calculation produces uncertainty in pion kinematics
- This time looking at scaling the contributing \underline{matrix} elements instead, using the $\Delta(1232)$ -only case

Combining elements

 Looking at individual variations of g_{mm} and its effect on pion momentum

- In this example, $+3\sigma$ for $\varrho_{-3,-3}$ goes in opposite direction to $+3\sigma$ for $\varrho_{-1,-1} \rightarrow a -3\sigma/+3\sigma$ combination would have a larger effect than $-3\sigma/-3\sigma$
 - Haven't studied the detailed correlations, could be improved
 - $-\sigma$ is defined as 30% change, roughly justifiable from original matrix element paper (FKR quark resonance model)

Clarence Wret

ROCHESTER

Combining elements

 Also found the Q-1,-3 had small effect on pion momentum, but large effect on angle, so included it too

6

ROCHESTER

Result

Weight distribution shows mean weight = 1; conserving cross-section

• -3σ has +47% more pions below threshold; $-3\sigma/+3\sigma = 86\%$; $-2\sigma/+2\sigma = 48\%$

 → Under extreme variations dial allows for very large changes in low pion momentum behaviour

Result

 Has no effect on outgoing lepton distribution as intended (or E_v, or W, or Q², etc)

Results

- Considerable effect on angular distributions, with clear intersection points for the variations
 - I think this is where the spherical harmonics may on average be maximised/minimised?

- Probably pushing physicality of variation in this region?

Results

 Compare to other resonance decay dial developed for analysis

 Additional benefit of continuous parameter vs discrete parameter

Mini-summary

- Yet Another Source of Pion Kinematics Uncertainty[™] found, this time from scaling matrix elements for Δ(1232) resonance
- Extends on previous work on trying isotropic (no resonance), $\Delta(1232)$ -only, and multiple resonances treatment
 - Will combine into one single uncertainty
- To my knowledge, no one is accounting for this or the isotropic/ $\Delta(1232)$ -only, and multiple resonances uncertainty
- Has considerable effect on angular distributions and nucleon distributions too, and no effect on incoming/outgoing lepton, initial state nucleon, Q², W, etc

- In addition to multi-ring selection at SK, T2K is introducing a "CCphoton" selection at ND280 to better target $CC1\pi^0$
 - Previously, events with a/many photons were lumped together with multi- π events
 - This year we want a better constraint on multi- π , since it contributes to multi-ring at SK
 - Separate out photon contribution to its own selection
 - Also, technically, get a better $CC1\pi^0$ constraint
- Additionally, photon tag improves purity and efficiency of other ND selections: CC0 $\pi \rightarrow$ CC0 π without a photon, and so on

• The majority of CC1 π^0 events on T2K are from resonance interactions, mostly $\Delta(1232)$

- As such, they are constrained by the same parameters as the $CC1\pi^+$ events, which we have much more of
- But, is having CC1 π^+ events constrain CC1 π^0 events through our single pion model a good idea?
- Let's generate some events with the model, and compare to measured cross-sections from MINERvA, MiniBooNE and T2K using NUISANCE
- See how much we're off with simple normalisation
 Clarence Wret

Mini-summary

- If $CC1\pi^+$ is over-estimated, $CC1\pi^0$ is under-estimated
- Most of the shape of kinematics modelled well after scaling
- Looks like a CC1 π^+ /CC1 π^0 relative scaling is a decent proposal, at least from inspecting external data
- More conservative to decorrelate than to correlate, so going ahead with this

$CC1\pi^{+/0/\text{-}} \text{ low } Q^2$

- Since we're at it, might as well check low Q² behaviour for the single-pion final sate; is a suppression needed?
 - Some literature (including yours truly) argues may need suppression low Q², but those studies used an old version of GENIE (2.8.6)
 - NOvA also used to need a CC1 π^+ suppression, but after updating to GENIE 3 no longer do
- Here we primarily care about the CC1π⁺ final state, since that will be included in both SK and T2K analyses

$CC1\pi^{\scriptscriptstyle +} \ low \ Q^2$

18

MINERVA CC1 π^+

$CC1\pi^0 low Q^2$

- MiniBooNE looks fine, but MINERvA does not
- Different resonances contributing to final state (W<1.8 GeV, higher energy at MINERvA)
- More multi- π /transition/SIS events contributing at MINERvA
- Not quite as clear cut

Clarence Wret

Summary

- T2K is introducing a new pion kinematics shape uncertainty into analysis, developed either from effect of multiple resonances, or from scaling the matrix elements
- About 50% uncertainty on pions below Cherenkov threshold for a 2σ variation for the latter dial
- A separate CC1 π^0 scaling parameter seems justified by comparison to external data from MINERvA, T2K and MiniBooNE
 - Uncertainty of about 30%
- Low Q² suppression for CC1 π^+ interactions appears unnecessary against T2K, MINERvA and MiniBooNE data
- Low Q^2 suppression for $CC1\pi^0$ interactions may be warranted
 - But relatively few events enter the oscillation analysis, so leaving it for now

Thanks!