Tuning the GENIE interaction model to MINERvA data

90+% Patrick Stowell's work

Link to thesis

https://arxiv.org/abs/1903.01558

Clarence Wret

VERSITY of HESTER

Patrick Stowell, Luke Pickering, Callum Wilkinson Pittsburgh Tensions Workshop 2019 9 July 2019

Introduction

- Patrick Stowell's (Sheffield) work during his NPC at FNAL with MINERvA, summer 2017
- Used NUISANCE with GENIE and published MINERvA data to tune and develop an empirical single pion production model
- GENIE 2.12.6 with default settings* to match current experiments' simulations
 - Wanted to provide experiments with usable model and uncertainties
 - Did not want to run with "latest and greatest" models: harder to apply for experiments
 - Can be reproduced in GENIE vX.Y.Z with model Å, Ä, Ö, by push of a button

- We never quiet get single pion modelling right
- NOvA currently applies 1p1h Nieves RPA correction to resonant events

MINOS CCQE analysis saw consistent low-Q² mismodelling in resonant-enhanced sidebands

Clarence Wret

A. Bercellie

MINERvA sees indications in most channels

Clarence Wret

- The source of this mismodelling is (probably) a complex combination of missing known effects
 - e.g. lepton mass effects, non-resonant background modelling, resonance in-medium propagation, poor nucleon model, multi-pion/DIS transition model, FSI
- And unknown effects!
- We are not trying to assess where the effect comes from, we're just providing a tune to data
 - Provides experiments with data driven model and uncertainties
 - Much better than ignoring the problem
 - But certainly not a complete solution!

Method

- Didn't want to use measurements in "theory variables", e.g. Q²_{True}
 - Possible interaction model dependence in data
- Use observed kinematic distributions
 - Straight-forward smearing
 - Less reliant on correct theory systematics in expt.

Channel	$\nu_{\mu} \text{CC1} \pi^{\pm}$ [19]	$\nu_{\mu} \mathrm{CC} N \pi^{\pm} \ [20]$	$\nu_{\mu} \text{CC1} \pi^0 \ [21]$	$\bar{\nu}_{\mu} \text{CC1} \pi^0 \ [20]$
$\mathrm{N}_{\mathrm{bins}}~p_{\mu}$	8	9	8	9
$\mathrm{N}_\mathrm{bins}~ heta_\mu$	9	9	9	9
$\mathrm{N}_\mathrm{bins}~T_\pi$	7	7	7	7
$\mathrm{N}_\mathrm{bins}~ heta_\pi$	14	14	11	11
$N_{\rm bins}$ total	38	39	35	36
Signal definition	$1\pi^{\pm}, \ge 0\pi^0$	$> 0\pi^{\pm}, \ge 0\pi^0$	$1\pi^0,0\pi^\pm$	$1\pi^0, \ 0\pi^\pm$
	$1\mu^-$	$1\mu^-$	$1\mu^-$	$1\mu^+$
	$W_{\rm rec} < 1.4 {\rm GeV}$	$W_{\rm rec} < 1.8 { m ~GeV}$	$W_{\rm rec} < 1.8 {\rm ~GeV}$	$W_{\rm rec} < 1.8 {\rm ~GeV}$
			$\theta_{\mu} < 25^{\circ}$	

Procedure

- Default GENIE + MINERvA coherent tune
 - $E_{\pi} < 0.45 \text{ GeV} \rightarrow 0.5 \text{ norm}, E_{\pi} > 0.45 \text{ GeV} \rightarrow 1.0 \text{ norm}$
- Apply ANL/BNL tune from paper

K. Eur. Phys. J. C (2016)

- Identify and tune theory parameters
- Introduce empirical tune

Correlations

All data (so far) are single dimension cross-sections

- Have correlations for each individual distribution
- No cross-correlations between distributions

Clarence Wret

Correlations

- Fine, some correlations are missing; do we care?
- Yes! CC1 π^0 is CC1 π^+ background and vice versa
 - Side-band sample in one is signal sample in the other
- CC1 π^+ is sub-sample of CCN π^+
- Flux uncertainties largely the same
- Detector/reconstruction largely the same

Largest source of strong rate correlation is the flux

<u>CC1 π^{\pm} p_u covariance</u>

Correlations

- Only correct way is to re-run analyses simultaneously, keeping track of the correlated universes
 - No volunteers in MINERvA, so wasn't done
- Pick a distribution which controls the normalisation (rate), use the others as shape
 - We chose p_{μ} because
 - Clean in MINERvA
 - Pretty flat efficiency
 - Pretty good smearing
 - Largely insensitive to shape variations of fitting parameters
- Chose to use one p_{μ} distribution per topology
 - Could've done one p_{μ} in total
- Doesn't fully mitigate problem

Clarence Wret

Holes of

efficiency in $\theta_{v\pi}$

Pause for air

If you're keen on keeping your data fresh

- People will misinterpret your data and make wrong conclusions about modelling if you don't
- Everyone agrees it needs to be done, but no one does it

Applying ANL/BNL tune

- Chose a decent set of GENIE systematics to weight in
 - M_A^{res} , CC_{RES}^{Norm} , Non-Res Norm, 2π norm, (non)isotropic RS
- Apply tuning from ANL/BNL paper

	$CC1\pi^0$ gets	Distribution	Channel	$N_{\rm bins}$	Default	ANL/BNL	
	uniformly worse	p_{μ} (Rate)	$\nu_{\mu} \text{CC1} \pi^+$	8	19.1	13.8)
	uniformity worse		$\nu_{\mu} CCN \pi^+$	9	35.4	19.5	$\int P_{2} dx v^{2} improves^{2}$
			$ u_{\mu} \text{CC1} \pi^0$	8	11.1	19.6	rate & improves:
			$\bar{\nu}_{\mu} \text{CC1} \pi^0$	9	7.4	6.4	J
	All θ shape \int	θ_{μ} (Shape)	$\nu_{\mu} \text{CC1} \pi^+$	9	7.1	12.4)
	distributions are		$\nu_{\mu} CCN \pi^+$	9	4.5	10.4	
			$ u_{\mu} CC1 \pi^0$	9	35.1	71.5	
	worse		$\bar{\nu}_{\mu} \text{CC1} \pi^0$	9	9.3	14.0	
		T_{π} (Shape)	$\nu_{\mu} \text{CC1} \pi^+$	7	2.9	2.6	Pretty much
			$\nu_{\mu} CCN \pi^+$	7	39.8	34.7	(everything
ſ	- · ·		$ \nu_{\mu} \text{CC1} \pi^{0} $	7	28.3	31.4	(else gets
	<u>Iensions in</u>		$\bar{\nu}_{\mu} \text{CC1} \pi^0$	7	19.3	17.9	worse
	applying	θ_{π} (Shape)	$\nu_{\mu} \text{CC1} \pi^+$	14	25.4	26.5	
	nucleon fits to		$\nu_{\mu} CCN \pi^+$	14	11.7	11.1	
	nuclear data		$ \nu_{\mu} \text{CC1} \pi^{0} $	11	13.5	15.0	
	<u>Huclear uata</u>		$\bar{\nu}_{\mu} \text{CC1} \pi^0$	11	5.7	5.9	
		Total χ^2		148	275.6	312.7	$\leftarrow Iotal \chi^2 \text{ is bad}$
Cla	rence Wret						with and without

Not very surprising

We've seen this numerous times before (e.g. initial state, RPA, 2p2h, FSI...)

Oftentimes, un-modelled nuclear effects to blame

How do we "fix" it?

- Maybe it's all in FSI parameters?
- Apply a penalty on nucleon parameters from ANL/BNL tuning, no penalty on remaining parameters

Parameter	Default Value	GENIE-RW Name
CC Resonant Axial Mass $(M_{\rm A}^{\rm res})$	$1.12 \pm 0.22 \text{ GeV}$	MaCCRES
CC Resonant Normalization (NormRes)	$100\pm20~\%$	NormCCRES
$CC1\pi$ Nonresonant Normalization (NonRes 1π)	$100\pm50~\%$	NonRESBGvnCC1pi
		NonRESBGvpCC1pi
Nucleon parameters		NonRESBGvbarnCC1pi
from ANL/BNL		NonRESBGvbarpCC1pi
$CC2\pi$ Nonresonant Normalization (NonRes 2π)	$100 \pm 50 \%$	NonBESBGunCCOni
$OO2\pi$ ivonitesonant ivormanzation (ivonites 2π)	100 ± 00 70	NonRESBGvpCC1pi
Freely fitted		NonRESBGvbarnCC1pi
parameters		NonRESBGvbarpCC1pi
Pion Angular Emission (π -iso)	0 (RS)	Theta_Delta2Npi
Pion Absorption FSI Fraction (FrAbs)	$100\pm30~\%$	FrAbs_pi
Pion Inelastic FSI Fraction (FrInel)	$100\pm40~\%$	${\tt FrInel_pi}$

16

Very very

difficult for

• Hold on, two FSI parameters?! Well spotted!

Pion Absorption FSI Fraction (FrAbs) $100 \pm 30 \%$ FrAbs_piPion Inelastic FSI Fraction (FrInel) $100 \pm 40 \%$ FrInel_pi

- Initially tried fitting all FSI parameters simultaneously
- Tiny errors from strange behaviour in the test-statistic
 - Not present when varying one FSI parameter at a time
 - Or any other parameter simultaneously

- GENIE authors contacted, and this is intended
- Tries to maintain pion-nucleus scattering cross-section by varying cushion terms up to hard-coded precision
 - Simultaneous fit not possible with this FSI model
- Decided to evaluate which parameters had largest effect on total χ^2 and use it as only FSI parameter being fit
 - Limitation of this paper
- Inelastic scattering and pion absorption were largest effects
 - The other fits had the pion parameters move to +300%; the test-statistic had poor sensitivity
 - The non-FSI parameters always converged to similar values, unlikely to be cherry-picking

Both FrAbs and FrInel fits converge to similar parameter values and test-statistics, with clear improvements in χ^2

Parameter	Default Value	ANL/BNL Value	FrAbs Fit Result	FrInel Result
$M_{\rm A}^{\rm res}~({\rm GeV})$	1.12 ± 0.22	0.94 ± 0.05	1.07 ± 0.04	1.08 ± 0.04
NormRes $(\%)$	100 ± 30	115 ± 7	94 ± 6	92 ± 6
NonRes1 π (%)	100 ± 50	43 ± 4	44 ± 4	44 ± 4
NonRes 2π (%)	100 ± 50	-	166 ± 32	161 ± 33
π -iso	0 = RS	-	1 = Iso (limit)	1 = Iso (limit)
FrAbs (%)	100 ± 30	-	109 ± 16	-
FrInel (%)	100 ± 40	-	-	109 ± 24
MINER $\nu A \chi^2$	275.6	312.7	242.3	240.7
$\chi^2_{ m pen}$	299.3	0.0	9.3	11.1
Total χ^2	574.8	312.7	251.6	251.8
N _{DoF}	148	148	145	145

- As expected, ANL/BNL parameters are contended in the fit
- The fit moves closer to the GENIE nominal, except for the non-resonant background

Clarence Wret

Fit individual cross-section topologies to gauge which is pulling

Parameter	$\nu_{\mu} \text{CC1} \pi^+$	$ u_{\mu} CCN \pi^+$	$ u_{\mu} { m CC1} \pi^0$	$ar{ u}_{\mu} ext{CC1} \pi^0$
$M_{\rm A}^{\rm res}$ (GeV)	0.97 ± 0.05	0.97 ± 0.05	1.02 ± 0.05	0.96 ± 0.05
NormRes $(\%)$	110 ± 7	110 ± 7	104 ± 7	111 ± 7
NonRes1 π (%)	43 ± 4	42 ± 4	44 ± 4	43 ± 4
NonRes 2π (%)	300 (limit)	$99{\pm}30$	300 (limit)	300 (limit)
$\pi ext{-iso}$	1 = Iso (limit)	1 = Iso (limit)	1 = Iso (limit)	1 = Iso (limit)
FrAbs $(\%)$	156 ± 53	128 ± 34	126 ± 17	82 ± 31
MINER $\nu A \chi^2$	36.6	64.1	92.3	34.6
$\chi^2_{ m pen}$	0.5	0.7	3.2	0.3
Total χ^2	37.1	64.8	95.5	34.9
N_{DoF}	35	36	32	33

• $CC1\pi^{0}$ channel does not agree well with prior

- Anti-neutrino pulls to different FSI parameter value
- Parameters largely agree for the fits, no huge pulls
 - NonRes 2π barely has an effect, which is why +300%

Clarence Wret

Have we learnt anything? Arguably, <u>yes.</u>

ANL/BNL prior does not agree with data

Largest pull from $CC1\pi^0$

Be careful with your priors and uncertainties

- MINOS and MiniBooNE have both seen this before
 - MINOS imposed an empirical Q² dependent tuning
- NOvA currently see this
 - Apply the RPA correction from CCQE
- Empirical Q² dependent tuning could absorb missing nuclear effect, but difficult to diagnose where it is from
 - There's so much missing in single pion production models
- Develop our own form for the Q² dependent suppression

$$w(Q^2) = 1 - (1 - R_1)(1 - R(Q^2))^2$$

 $R(Q^2 < x_3) = \frac{R_2(Q^2 - x_1)(Q^2 - x_3)}{(x_2 - x_1)(x_2 - x_3)}$

 $+\frac{(Q^2-x_1)(Q^2-x_2)}{(x_3-x_1)(x_3-x_2)}.$

Cut-offs at
$$x_1, x_2, x_3$$
;
tune R_1 and R_2

Clarence Wret

Including the Q²-dependent suppression alleviates the tension with the ANL and BNL tuning

Parameter	FrAbs Tune	$FrAbs + low - Q^2$	Tune FrInel Tune	$FrInel + low-Q^2$ Tune
$M_{\rm A}^{\rm res}~(GeV)$	1.07 ± 0.04	0.92 ± 0.02	1.08 ± 0.04	0.93 ± 0.05
NormRes $(\%)$	94 ± 6	116 ± 3	92 ± 6	116 ± 7
NonRes1 π (%)	43 ± 4	46 ± 4	44 ± 4	46 ± 4
NonRes 2π (%)	166 ± 32	$99{\pm}31$	161 ± 33	120 ± 32
π -iso	1.0 (limit)	1.0 (limit)	1.0 (limit)	1.0 (limit)
$FrAbs \ (\%)$	109 ± 16	48 ± 21	-	-
FrInel $(\%)$	-	-	109 ± 24	132 ± 27
Lag. R_1	-	0.32 ± 0.06	-	0.37 ± 0.09
Lag. R_2	-	0.5 (limit)	-	0.60 ± 0.16
MINER $\nu A \chi^2$	242.3	212.2	240.7	215.7
$\chi^2_{ m pen}$	9.3	0.7	11.1	0.5
$Total\chi^2$	251.6	212.9	251.8	216.2
N_DoF	145	143	145	143

- And improves the χ^2 from the MINERvA data-sets
- Absorption and inelastic tune ~agree, although R_2 sits at the limit
 - Still not a great χ^2 , and tension may be artificially relieved

- Looking at individual distributions' χ²
 - Sometimes $1\pi^+$ improves with Q^2 tune, whereas $1\pi^0$ worsens

Distribution	Channel	$\rm N_{\rm bins}$	FrAbs Tune	$FrAbs + low-Q^2$ Tune	FrInel Tune	$FrInel + low-Q^2$ Tune
p_{μ} (Rate)	$\nu_{\mu} CC1 \pi^{\pm}$	8	12.0	10.8	12.3	10.9
	$\nu_{\mu} CCN \pi^{\pm}$	9	26.1	16.2	26.8	17.9
	$\nu_{\mu} CC1 \pi^0$	8	19.0	26.2	19.3	26.9
	$\bar{\nu}_{\mu} CC1 \pi^0$	9	6.2	7.1	6.3	7.2
θ_{μ} (Shape)	$\nu_{\mu} CC1 \pi^{\pm}$	9	7.5	7.4	7.4	7.1
	$\nu_{\mu} CCN \pi^{\pm}$	9	4.0	6.3	4.1	5.6
	$\nu_{\mu} \text{CC1} \pi^0$	9	44.5	20.0	45.6	20.5
	$\bar{\nu}_{\mu} CC1 \pi^0$	9	10.2	7.0	10.3	6.9
T_{π} (Shape)	$\nu_{\mu} CC1 \pi^{\pm}$	7	2.5	2.5	2.3	2.4
	$\nu_{\mu} CCN \pi^{\pm}$	7	31.2	28.9	29.4	27.7
	$\nu_{\mu} CC1 \pi^0$	7	30.9	27.1	29.9	32.0
	$\bar{\nu}_{\mu} CC1 \pi^0$	7	16.6	15.7	16.0	18.7
θ_{π} (Shape)	$\nu_{\mu} CC1 \pi^{\pm}$	14	13.0	13.4	12.6	12.6
	$\nu_{\mu} CCN \pi^{\pm}$	14	6.9	7.0	6.2	6.3
	$\nu_{\mu} CC1 \pi^0$	11	8.3	12.2	8.9	9.4
	$\bar{\nu}_{\mu} CC1 \pi^0$	11	3.4	4.4	3.5	3.7
Total χ^2		148	242.3	212.2	240.7	215.7

- ANL/BNL penalty term steers the nucleon parameters
 - Mismodelling absorbed in very different R_1 and R_2

Parameter	$\nu_{\mu} \text{CC1} \pi^+$	$ u_{\mu} \mathrm{CC} N \pi^+$	$ u_{\mu} { m CC1} \pi^0$	$\bar{ u}_{\mu} ext{CC1} \pi^0$
$M_{\rm A}^{\rm res}~({\rm GeV})$	0.93 ± 0.02	0.92 ± 0.02	0.96 ± 0.05	0.94 ± 0.05
NormRes $(\%)$	115 ± 3	117 ± 3	114 ± 7	115 ± 7
NonRes1 π (%)	43 ± 4	43 ± 4	45 ± 4	43 ± 4
NonRes 2π (%)	300 (limit)	70 ± 28	300 (limit)	300 (limit)
π -iso	1 = Iso (limit) $1 = $ Iso (limit)	1 = Iso (limit)	1 = Iso (limit)
$\mathbf{FrAbs}\ (\%)$	92 ± 65	79 ± 40	74 ± 22	34 ± 35
Lag. R_1	0.53 ± 0.16	0.43 ± 0.13	0.21 ± 0.14	0.14 ± 0.22
Lag. R_2	0.50 (limit)	0.50 (limit)	0.63 ± 0.31	1.00 (limit)
$\overline{\text{MINER}\nu A \ \chi^2}$	32.2	55.7	71.2	27.7
$\chi^2_{ m pen}$	0.1	0.4	0.5	0.0
Total χ^2	32.3	56.1	71.7	27.7
N _{DoF}	33	34	30	31

• At times at the limit for R_2

ROCHESTER

• Not enough power in data? Insufficient model freedom?

26

FrAbs with Q² tuning

00

- Charged pion and neutral pion channels are similar to each other and the joint fit error band
- Doesn't do a perfect job

- The pion distributions are largely invariant to the tune
- We've changed nucleon physics and made a Q² tuning
 - Nothing explicitly working on the pions other than FSI and (non-)isotropic parameter

- The pion distributions are largely invariant to the tune
- We've changed nucleon physics and made a Q² tuning
 - Nothing explicitly working on the pions other than FSI and (non-)isotropic parameter

Conclusions

- Used MINERvA data to tune GENIE single pion production
- Tuning to nucleon level data worsens the prediction
- Tuning the nucleon level parameters with pion FSI added pulls the nucleon closer to GENIE nominal: clear tension
- CC1 π^0 data in tension with other distributions
- Introduce Q² dependent correction, looking for a nuclear effect
- Alleviates tension with nucleon tune, but far from perfect
- Pion variables still aren't well described

Thanks!

Clarence Wret