Tuning the GENIE interaction model to MINERvA data

90% Patrick Stowell's work

Clarence Wret Rochester long update 10 June 2019

Introduction

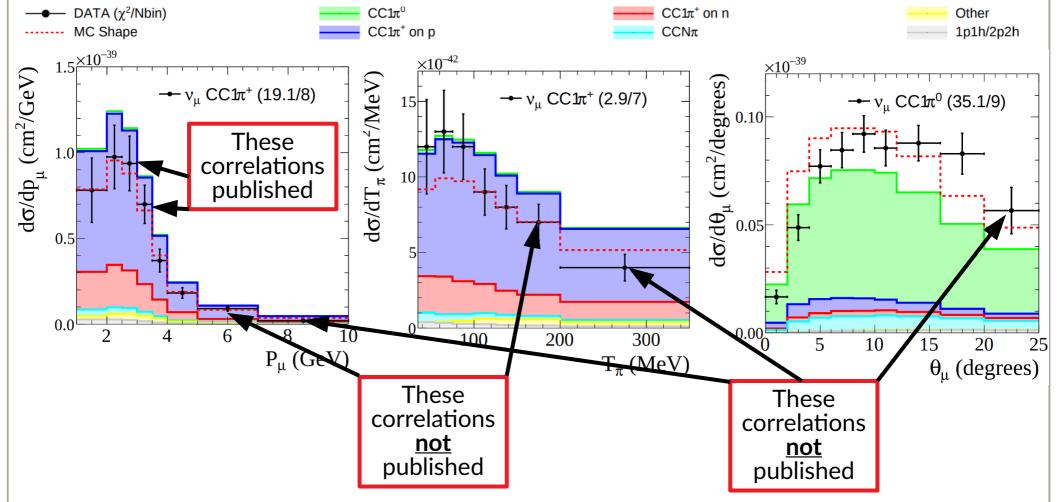
You're (almost) all on the author list

Tuning the GENIE Pion Production Model with MINERvA Data

P. Stowell,¹ L. Pickering,² C. Wilkinson,³ C.V.C. Wret,⁴ F. Akbar,⁵ D.A. Andrade,⁶ M. V. Ascencio,⁷ L. Bellantoni,⁸ A. Bercellie,⁴ M. Betancourt,⁸ A. Bodek,⁴ A. Bravar,⁹ H. Budd,⁴ G. Caceres,¹⁰ T. Cai,⁴ M.F. Carneiro,¹¹ J. Chaves,¹² H. da Motta,¹⁰ S.A. Dytman,¹³ G.A. Díaz,^{4,7} J. Felix,⁶ L. Fields,^{8,14} A. Filkins,¹⁵ R. Fine,⁴ N. Fiza,¹⁶ R.Galindo,¹⁷ H. Gallagher,¹⁸ A. Ghosh,^{17,10} R. Gran,¹⁹ D.A. Harris,⁸ S. Henry,⁴ S. Jena,¹⁶ D.Jena,⁸ J. Kleykamp,⁴ M. Kordosky,¹⁵ D. Last,¹² T. Le,^{18,20} X.-G. Lu,²¹ E. Maher,²² S. Manly,⁴ W.A. Mann,¹⁸ C.M. Marshall,^{4,4} K.S. McFarland,⁴ ⁸ B. Messerly,¹³ J. Miller,¹⁷ J.G. Morfín,⁸ J. Mousseau,^{23,†} D. Naples,¹³ J.K. Nelson,¹⁵ C. Nguyen,²³ A. Norrick,¹⁵ Nuruzzaman,^{20,17} V. Paolone,¹³ G.N. Perdue,^{8,4} M.A. Ramírez,⁶ R.D. Ransome,²⁰ H. Ray,²³ D. Rimal,²³ P.A. Rodrigues,^{24,4} D. Ruterbories,⁴ H. Schellman,^{11,14} C.J. Solano Salinas,²⁵ H. Su,¹³ M. Sultana,⁴ V.S. Syrotenko,¹⁸ E. Valencia,^{15,6} J. Wolcott,^{4,‡} M.Wospakrik,²³ B. Yaeggy,¹⁷ L. Zazueta,¹⁵ and D. Zhang¹⁵ (The MINER_νA Collaboration)

- Largely Patrick Stowell's (Sheffield) work during his NPC at FNAL with MINERvA, summer 2017
- Used NUISANCE with GENIE and MINERvA data to tune and develop an empirical single pion production model

Method


- MINERvA's been pumping out publications
- T2K has been using MINERvA data to inform model choices, e.g. CCQE and single pion production
- We tried to combine information in all pion production data by MINERvA and tune GENIE

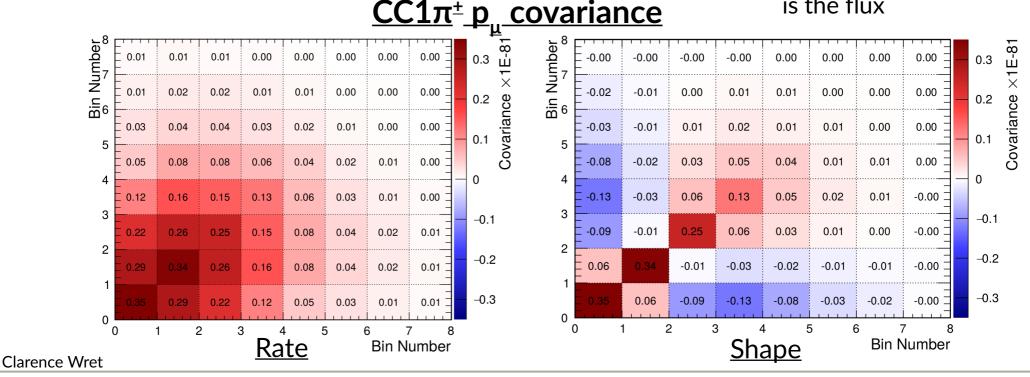
Channel	$\nu_{\mu} \text{CC1} \pi^{\pm}$ [19]	$\nu_{\mu} \mathrm{CC} N \pi^{\pm} \ [20]$	$\nu_{\mu} \text{CC1} \pi^0 \ [21]$	$\bar{\nu}_{\mu} \text{CC1} \pi^0 \ [20]$
${ m N}_{ m bins}~p_{\mu}$	8	9	8	9
$\mathrm{N}_{\mathrm{bins}}~ heta_{\mu}$	9	9	9	9
$\mathrm{N}_{\mathrm{bins}}~T_{\pi}$	7	7	7	7
$\mathrm{N}_{\mathrm{bins}}$ $ heta_{\pi}$	14	14	11	11
$N_{\rm bins}$ total	38	39	35	36
Signal definition	$1\pi^{\pm}, \ge 0\pi^0$	$> 0\pi^{\pm}, \ge 0\pi^0$	$1\pi^0, 0\pi^{\pm}$	$1\pi^0, \ 0\pi^\pm$
	$1\mu^-$	$1\mu^-$	$1\mu^-$	$1\mu^+$
	$W_{\rm rec} < 1.4 {\rm GeV}$	$W_{\rm rec} < 1.8 { m ~GeV}$	$W_{\rm rec} < 1.8 {\rm ~GeV}$	$W_{\rm rec} < 1.8 { m ~GeV}$
			$\theta_{\mu} < 25^{\circ}$	

All data (so far) are single dimension cross-sections

- Have correlations for each individual distribution
- No cross-correlations between distributions

Clarence Wret

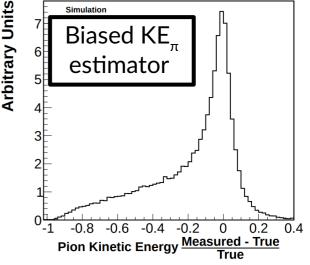
ROCHESTER

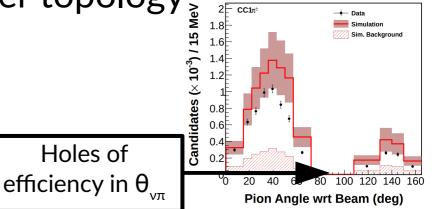


Cross-correlations

- Fine, some correlations are missing; do we care?
- Yes! CC1 π^0 is CC1 π^+ background and vice versa
 - Sideband tuning in one is signal in the other
- CC1 π^+ is sub-sample of CCN π^+
- Flux uncertainties largely the same
- Detector/reconstruction largely the same

Largest source of strong rate correlation is the flux





Cross-correlations

- Only correct way is to re-run analyses simultaneously, keeping track of the correlated universes
 - No volunteers, so wasn't done
- Pick a distribution which controls the normalisation (rate), use the others as shape
 - We chose p_{μ} because
 - Clean in MINERvA
 - Pretty flat efficiency
 - Pretty good smearing
 - Largely insensitive to shape variations
- Chose to use one p_u distribution per topology
 - Could've done one p_u in total?
- Doesn't fully mitigate problem

Holes of

Pause for air

If you're keen on making a big impact

- People will misinterpret your data and make wrong conclusions about modelling if not
- (We've been saying this for years, everyone agrees it needs to be done, but no one does it)

Clarence Wret

ROCHESTER

Applying nucleon parameters ROCHESTER Chose a decent set of GENIE systematics to weight in $-M_{\Delta}^{res}$, CC_{RFS}^{Norm}, Non-Res Norm, 2π norm Apply tuning from ANL/BNL tuning by Phil, Callum, Kevin https://arxiv.org/abs/1601.01888 N_{bins} Default ANL/BNL Distribution Channel $CC1\pi^0$ is $\nu_{\mu} \text{CC1} \pi^+$ p_{μ} (Rate) 19.113.88 uniformly worse $\nu_{\mu} CCN \pi^+$ 9 35.419.5Rate χ^2 improves? $\nu_{\mu} \text{CC1} \overline{\pi^0}$ 11.1 19.68 $\bar{\nu}_{\mu} CC1 \pi^0$ 9 7.46.4 θ_{μ} (Shape) $\nu_{\mu} \text{CC1} \pi^+$ 9 7.112.4All $\theta_{\rm u}$ shape $\nu_{\mu} CCN \pi^+$ 4.510.49 distributions are $\nu_{\mu} CC1 \pi^0$ 71.59 35.1worse $\bar{\nu}_{\mu} CC1 \pi^0$ 9 9.314.0Pretty much $\nu_{\mu} \text{CC1} \pi^+$ T_{π} (Shape) 7 2.62.9everything $\nu_{\mu} CCN \pi^+$ 7 39.8 34.7else gets $\nu_{\mu} CC1 \pi^0$ $\overline{7}$ 28.331.4**Tensions** in $\bar{\nu}_{\mu} CC1 \pi^0$ 7 17.919.3worse applying $\nu_{\mu} \text{CC1} \pi^+$ 26.5 θ_{π} (Shape) 14 25.4 $\nu_{\mu} CCN \pi^+$ nucleon fits to 1411.711.1 $\nu_{\mu} \text{CC1} \pi^0$ 11 13.515.0nuclear data $\bar{\nu}_{\mu} CC1 \pi^0$ 11 5.75.9Total χ^2 is awful Total χ^2 275.6312.7 148with and without

Clarence Wret

Not very surprising

We've seen this numerous times before (e.g. initial state, RPA, 2p2h, FSI...)

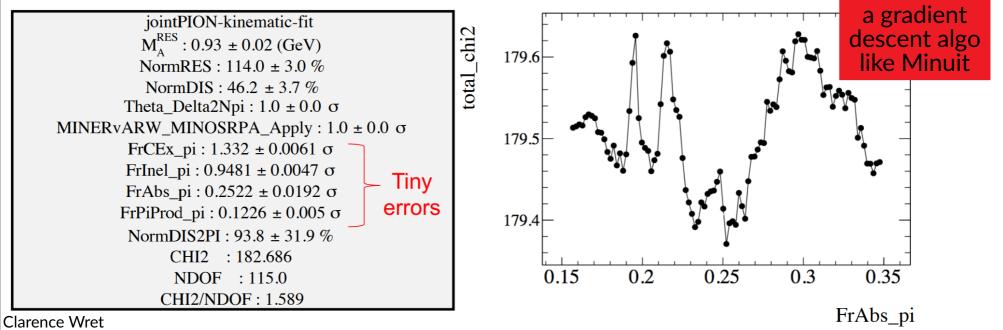
Oftentimes, un-modelled nuclear effects to blame

How do we "fix" it?

- Maybe it's all in FSI parameters?
- Apply a penalty on nucleon parameters from ANL/BNL tuning, no penalty on remaining parameter

Parameter	Default Value	GENIE-RW Name
CC Resonant Axial Mass $(M_{\rm A}^{\rm res})$	$1.12\pm0.22~{\rm GeV}$	MaCCRES
CC Resonant Normalization (NormRes)	$100\pm20~\%$	NormCCRES
$\mathrm{CC1}\pi$ Nonresonant Normalization (NonRes 1 $\pi)$	$100\pm50~\%$	NonRESBGvnCC1pi
		NonRESBGvpCC1pi
Nucleon parameters		NonRESBGvbarnCC1pi
from ANL/BNL		NonRESBGvbarpCC1pi
$CC2\pi$ Nonresonant Normalization (NonRes 2π) Freely fitted parameters	$100\pm50~\%$	NonRESBGvnCC2pi NonRESBGvpCC1pi NonRESBGvbarnCC1pi NonRESBGvbarpCC1pi
Pion Angular Emission (π -iso) Pion Absorption FSI Fraction (FrAbs)	0 (RS) $100 \pm 30 \%$	Theta_Delta2Npi FrAbs_pi
Pion Inelastic FSI Fraction (FrInel)	$100\pm40~\%$	${\tt FrInel_pi}$

11


Very very

difficult for

Hold on, two FSI parameters?! Well spotted!

Pion Absorption FSI Fraction (FrAbs) $100 \pm 30 \%$ FrAbs_piPion Inelastic FSI Fraction (FrInel) $100 \pm 40 \%$ FrInel_pi

- Initially tried fitting all FSI parameters simultaneously
- Tiny errors from strange behaviour in the test-statistic
 - Not present when varying one FSI parameter at a time
 - Or any other parameter simultaneously

- GENIE authors contacted, and this is apparently intended
- Tries to maintain pion-nucleus scattering cross-section by varying cushion terms to hard-coded precision
 - Simultaneous fit thrown out the window
 - Beware when making splines of FSI parameters I guess?
- Decided to evaluate which parameters had largest effect on total χ^2 and use it as only FSI parameter being fit
 - <u>Serious problem with this paper;</u> limitation of generator
- Inelastic scattering and pion absorption were largest effects
 - The other fits had the pion parameters move to +300%; teststatistic had poor sensitivity
 - The other parameters always converged to similar values, so not too concerned that we're cherry-picking

 Both abs and inel fits converge to similar parameter values and test-statistics, with clear improvements

Parameter	Default Value	ANL/BNL Value	FrAbs Fit Result	FrInel Result
$M_{\rm A}^{\rm res}$ (GeV)	1.12 ± 0.22	0.94 ± 0.05	1.07 ± 0.04	1.08 ± 0.04
NormRes $(\%)$	100 ± 30	115 ± 7	94 ± 6	92 ± 6
NonRes1 π (%)	100 ± 50	43 ± 4	44 ± 4	44 ± 4
NonRes 2π (%)	100 ± 50	-	166 ± 32	161 ± 33
π -iso	0 = RS	-	1 = Iso (limit)	1 = Iso (limit)
FrAbs $(\%)$	100 ± 30	-	109 ± 16	-
FrInel (%)	100 ± 40	-	-	109 ± 24
MINER $\nu A \chi^2$	275.6	312.7	242.3	240.7
$\chi^2_{ m pen}$	299.3	0.0	9.3	11.1
Total χ^2	574.8	312.7	251.6	251.8
N _{DoF}	148	148	145	145

- As expected, ANL/BNL parameters are contended in the fit
- Moves closer to the GENIE nominal, except for the background

Clarence Wret

ROCHESTER

Compared results from individual cross-section topologies

Parameter	$\nu_{\mu} \text{CC1} \pi^+$	$\nu_{\mu} \text{CC} N \pi^+$	$ u_{\mu} { m CC1} \pi^0$	$ar{ u}_{\mu} ext{CC1} \pi^0$
$M_{\rm A}^{\rm res}$ (GeV	0.97 ± 0.05	0.97 ± 0.05	1.02 ± 0.05	0.96 ± 0.05
NormRes (%	$76)$ 110 \pm 7	110 ± 7	104 ± 7	111 ± 7
NonRes1 π (%) 43 ± 4	42 ± 4	44 ± 4	43 ± 4
NonRes 2π (%) 300 (limit)	$99{\pm}30$	300 (limit)	300 (limit)
π -iso	1 = Iso (limit)	1 = Iso (limit)) $1 = $ Iso (limit)	1 = Iso (limit)
FrAbs $(\%)$	156 ± 53	128 ± 34	126 ± 17	82 ± 31
MINER _ν A	$\chi^2 = -36.6$	64.1	92.3	34.6
$\chi^2_{ m pen}$	0.5	0.7	3.2	0.3
Total χ^2	37.1	64.8	95.5	34.9
N_{DoF}	35	36	32	33

- $CC1\pi^0$ channel does not agree well with prior
- Parameters largely agree for the fits, no huge pulls
 - NonRes2 π barely has an effect, which is why +300%

Have we learnt anything? Arguably, <u>yes.</u>

ANL/BNL prior does not agree with data

Largest pull from $CC1\pi^0$

Be careful with GENIE

Be careful with your priors

- MINOS and MiniBooNE have both seen this before
 - MINOS imposed an empirical Q² dependent tuning
- NOvA currently see this
 - Apply the RPA correction from CCQE
- Empirical Q² dependent tuning could absorb missing nuclear effect, but difficult to diagnose where it is from
 - There's so much missing in single pion production models
- Develop our own form for the Q² dependent suppression

$$w(Q^2) = 1 - (1 - R_1)(1 - R(Q^2))^2$$

 $R(Q^2 < x_3) = \frac{R_2(Q^2 - x_1)(Q^2 - x_3)}{(x_2 - x_1)(x_2 - x_3)}$

In fancy language, this is a Lagrange interpolating function in Q²

$$+ \frac{(Q^2 - x_1)(Q^2 - x_2)}{(x_3 - x_1)(x_3 - x_2)} \quad \begin{array}{l} \text{Cut-offs at } x_1, x_2, x_3; \\ \underline{\text{tune } R_1 \text{ and } R_2} \end{array}$$

Clarence Wret https://en.wikipedia.org/wiki/Lagrange_polynomial

Including the Q²-dependent suppression alleviates the tension with the ANL and BNL tuning

Parameter	FrAbs Tune	$FrAbs + low-Q^2 Tune$	FrInel Tune	$FrInel + low-Q^2$ Tune
$M_{\rm A}^{\rm res}~(GeV)$	1.07 ± 0.04	0.92 ± 0.02	1.08 ± 0.04	0.93 ± 0.05
NormRes $(\%)$	94 ± 6	116 ± 3	92 ± 6	116 ± 7
NonRes1 π (%)	43 ± 4	46 ± 4	44 ± 4	46 ± 4
NonRes 2π (%)	166 ± 32	$99{\pm}31$	161 ± 33	120 ± 32
π -iso	1.0 (limit)	1.0 (limit)	1.0 (limit)	1.0 (limit)
$\operatorname{FrAbs}(\%)$	109 ± 16	48 ± 21	-	-
FrInel $(\%)$	-	-	109 ± 24	132 ± 27
Lag. R_1	-	0.32 ± 0.06	-	0.37 ± 0.09
Lag. R_2	-	0.5 (limit)	-	0.60 ± 0.16
MINER $\nu A \chi^2$	242.3	212.2	240.7	215.7
$\chi^2_{ m pen}$	9.3	0.7	11.1	0.5
$Total\chi^2$	251.6	212.9	251.8	216.2
N _{DoF}	145	143	145	143

- And improves the χ^2 from the MINERvA data-sets
- Absorption and inelastic tune ~agree, although R₂ is limited
 - Still not an awesome χ^2 , and tension may be artificially relieved

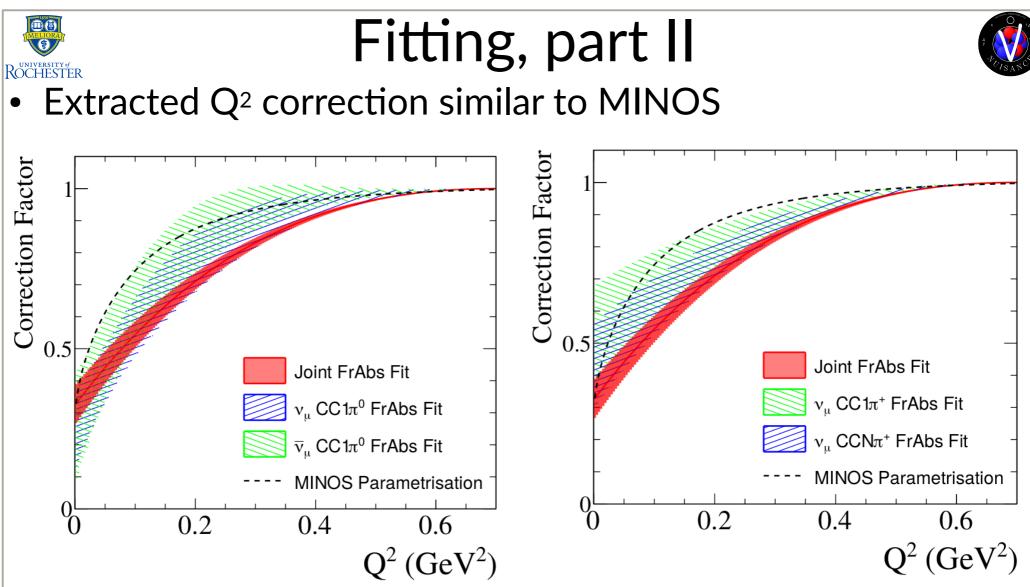
Looking at individual distributions χ²

ROCHESTER

– Appears to be $1\pi^+ 1\pi^0$ tension in FrInel not present in FrAbs

Distribution	Channel	$\rm N_{\rm bins}$	FrAbs Tune	$FrAbs + low-Q^2 Tune$	FrInel Tune	$FrInel + low-Q^2$ Tune
p_{μ} (Rate)	$\nu_{\mu} CC1 \pi^{\pm}$	8	12.0	10.8	12.3	10.9
	$\nu_{\mu} CCN \pi^{\pm}$	9	26.1	16.2	26.8	17.9
	$\nu_{\mu} \text{CC1} \pi^0$	8	19.0	26.2	19.3	26.9
	$\bar{\nu}_{\mu} CC1 \pi^0$	9	6.2	7.1	6.3	7.2
θ_{μ} (Shape)		9	7.5	7.4	7.4	7.1
	$\nu_{\mu} CCN \pi^{\pm}$	9	4.0	6.3	4.1	5.6
	$\nu_{\mu} \text{CC1} \pi^0$	9	44.5	20.0	45.6	20.5
	$\bar{\nu}_{\mu} CC1 \pi^0$	9	10.2	7.0	10.3	6.9
T_{π} (Shape)	$\nu_{\mu} CC1 \pi^{\pm}$	7	2.5	2.5	2.3	2.4
	$\nu_{\mu} CCN \pi^{\pm}$	7	31.2	28.9	29.4	27.7
	$\nu_{\mu} \text{CC1} \pi^0$	7	30.9	27.1	29.9	32.0
	$\bar{\nu}_{\mu} CC1 \pi^0$	7	16.6	15.7	16.0	18.7
θ_{π} (Shape)	$\nu_{\mu} CC1 \pi^{\pm}$	14	13.0	13.4	12.6	12.6
	$\nu_{\mu} CCN \pi^{\pm}$	14	6.9	7.0	6.2	6.3
	$ u_{\mu} CC1 \pi^0$	11	8.3	12.2	8.9	9.4
	$\bar{\nu}_{\mu} CC1 \pi^0$	11	3.4	4.4	3.5	3.7
Total χ^2		148	242.3	212.2	240.7	215.7

- Being able to tune just one FSI parameter is limitation

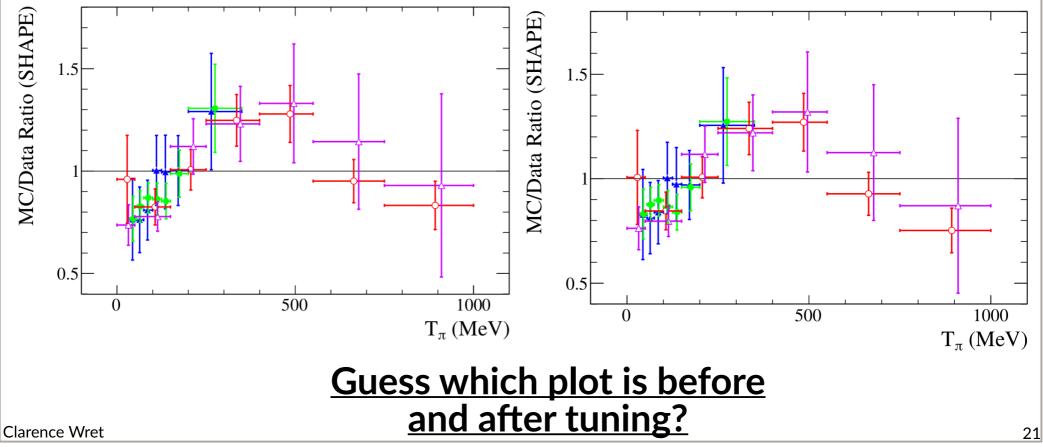

- ANL/BNL penalty term steers the nucleon parameters
 - Mismodelling absorbed in very different R_1 and R_2

Parameter	$\nu_{\mu} \text{CC1} \pi^+$	$ u_{\mu} \text{CC} N \pi^+$	$ u_{\mu} \text{CC1} \pi^0$	$ar{ u}_{\mu} ext{CC1}\pi^{0}$
$M_{\rm A}^{\rm res}~({ m GeV})$	0.93 ± 0.02	0.92 ± 0.02	0.96 ± 0.05	0.94 ± 0.05
NormRes $(\%)$	115 ± 3	117 ± 3	114 ± 7	115 ± 7
NonRes1 π (%)	43 ± 4	43 ± 4	45 ± 4	43 ± 4
NonRes 2π (%)	300 (limit)	70 ± 28	300 (limit)	300 (limit)
π -iso	1 = Iso (limit) $1 = $ Iso (limit)	1 = Iso (limit)	1 = Iso (limit)
$\operatorname{FrAbs}(\%)$	92 ± 65	79 ± 40	74 ± 22	34 ± 35
Lag. R_1	0.53 ± 0.16	0.43 ± 0.13	0.21 ± 0.14	0.14 ± 0.22
Lag. R_2	0.50 (limit)	0.50 (limit)	0.63 ± 0.31	1.00 (limit)
MINER $\nu A \chi^2$	32.2	55.7	71.2	27.7
$\chi^2_{ m pen}$	0.1	0.4	0.5	0.0
Total χ^2	32.3	56.1	71.7	27.7
N _{DoF}	33	34	30	31
	V			

• At times at the limit for R_2

ROCHESTER

Not enough power in data to constrain all of these parameters?



- Charged pion and neutral pion channels are similar to each other and the job fit error band
- Clearly doesn't do a perfect job!

- Less awesome is that the pion distributions are largely invariant to the tune; have this problem on T2K too
- Kind of expected since we've changed nucleon physics and made a Q² tuning
 - Nothing explicitly working on the pions other than FSI and (non-)isotropic parameter

Conclusions

- Used MINERvA data to tune GENIE single pion production
- Tuning to nucleon level data worsens the prediction
- Tuning the nucleon level parameters with pion FSI added pulls the nucleon closer to GENIE nominal: clear tension
- CC1 π^0 data in tension with other distributions
- Introduce Q² dependent correction, looking for a nuclear effect
- Alleviates tension with nucleon tune, but far from perfect
- Pion variables still aren't well explained
- Only as valid as the method
 - Lacking cross-correlations lead to somewhat arbitrary data selection and where the test-statistic comes from
 - Pion FSI paramaters in GENIE meant only one-at-a-time FSI parameter tuning was possible

Thanks!

Clarence Wret