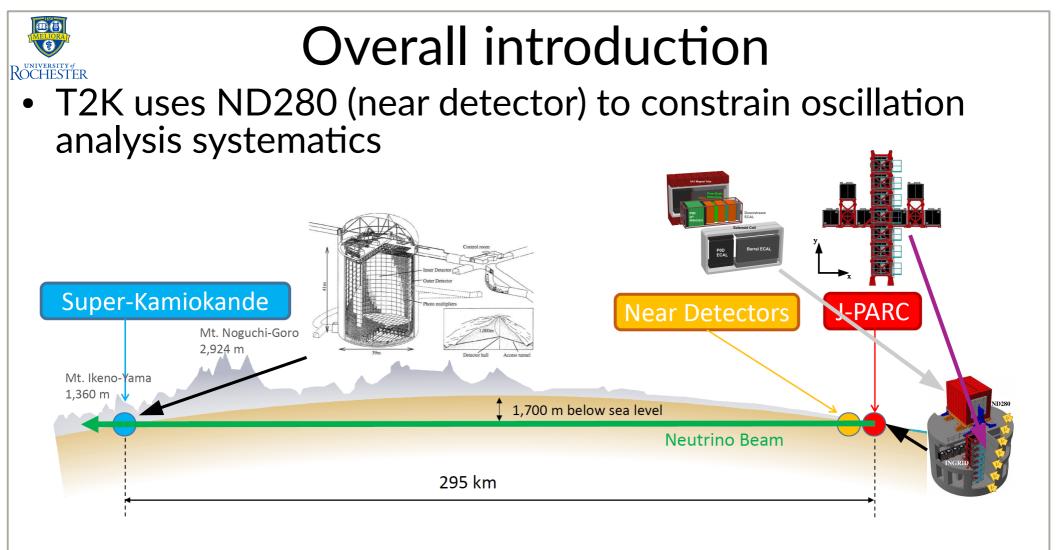
Accounting for MC statistics in T2K ND fit

Hopefully useful to other analyses too!

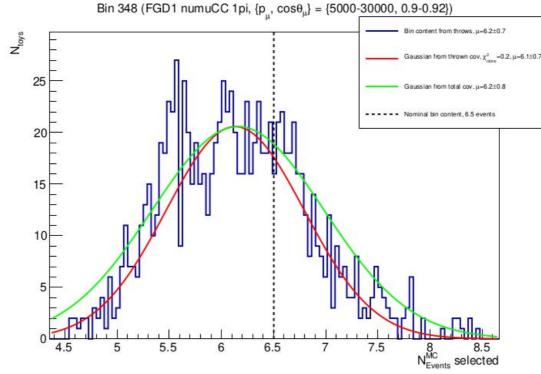
Clarence Wret Rochester long update 4 November 2019



- Systematics: neutrino flux (100), neutrino cross-sections (~30), ND280 detector parameters (~600), SK detector parameters (~30)
- Yuck, so many ND280 parameters

Introduction

- We make a covariance matrix for the ND280 systematic parameters
 - Vary detector parameters simultaneously, making "toy experiments"
- Look at how bin content changes for the different universes
- Merge bins with similar responses to systematic variations
 - Brings down nbins from ~4100 bins to 1076 in my thesis

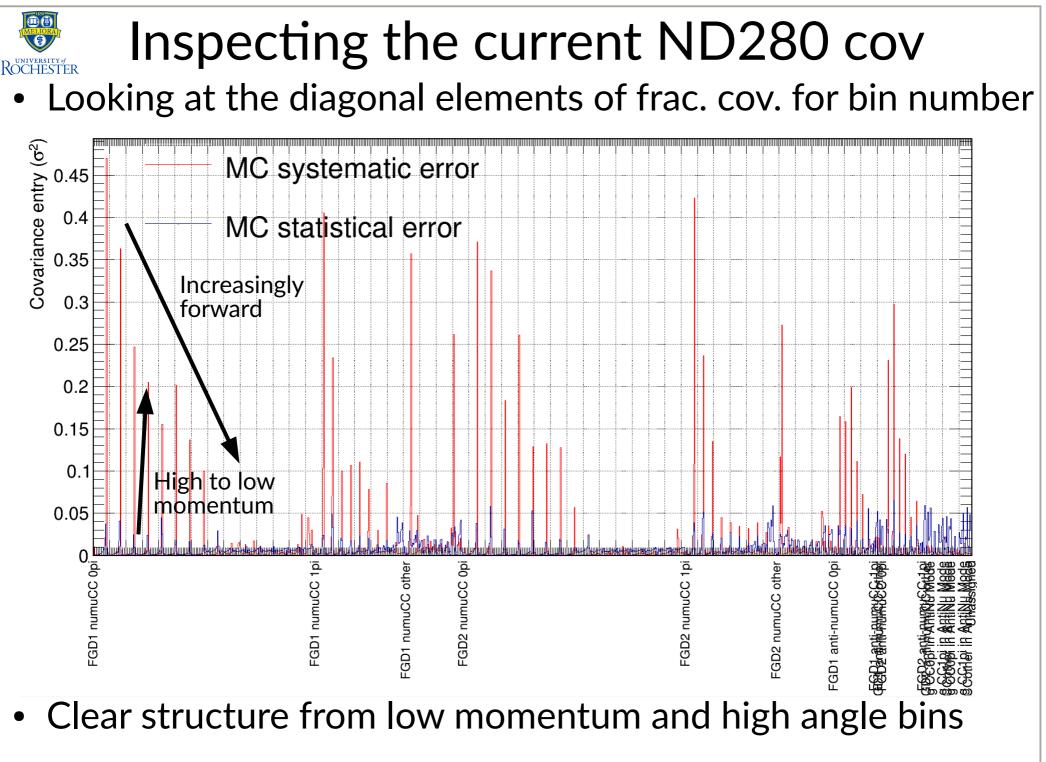


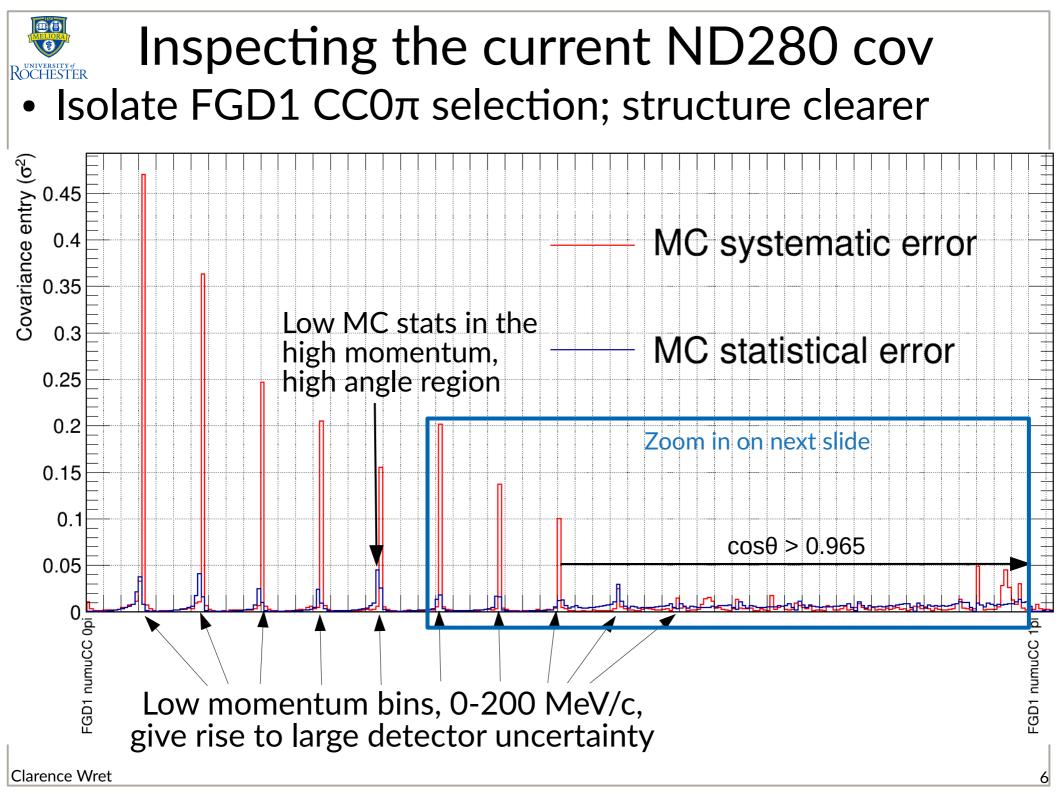
Introduction

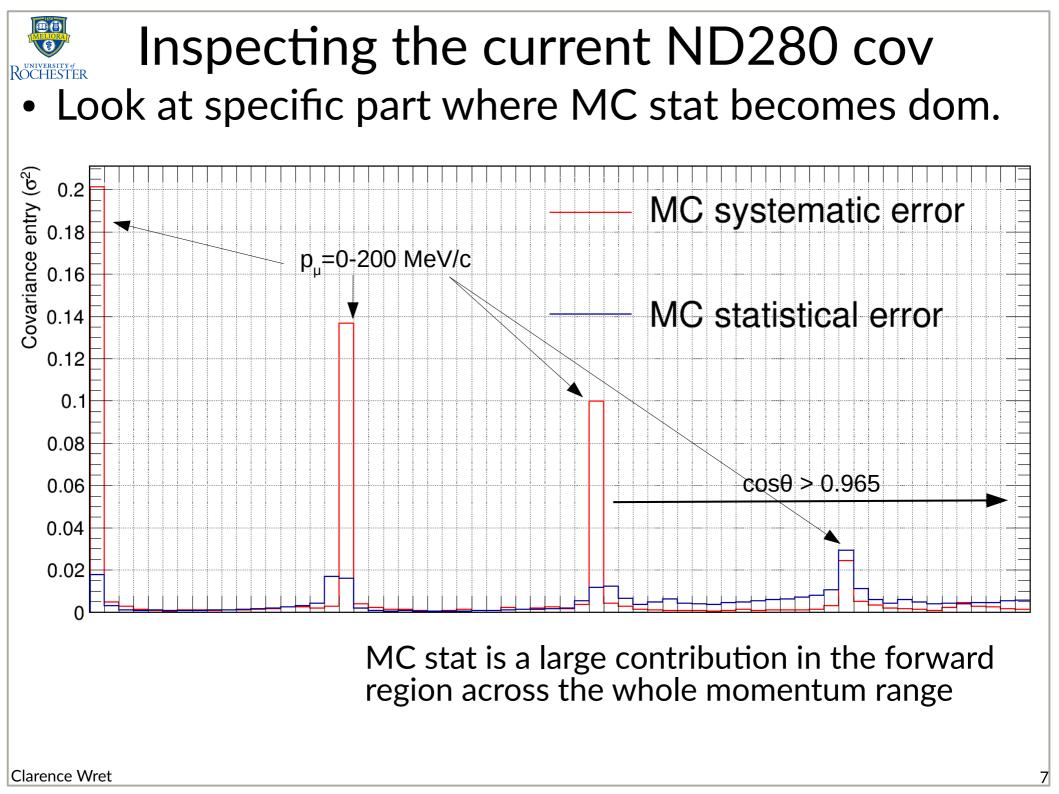
 We then add in MC statistics to create our total covariance matrix

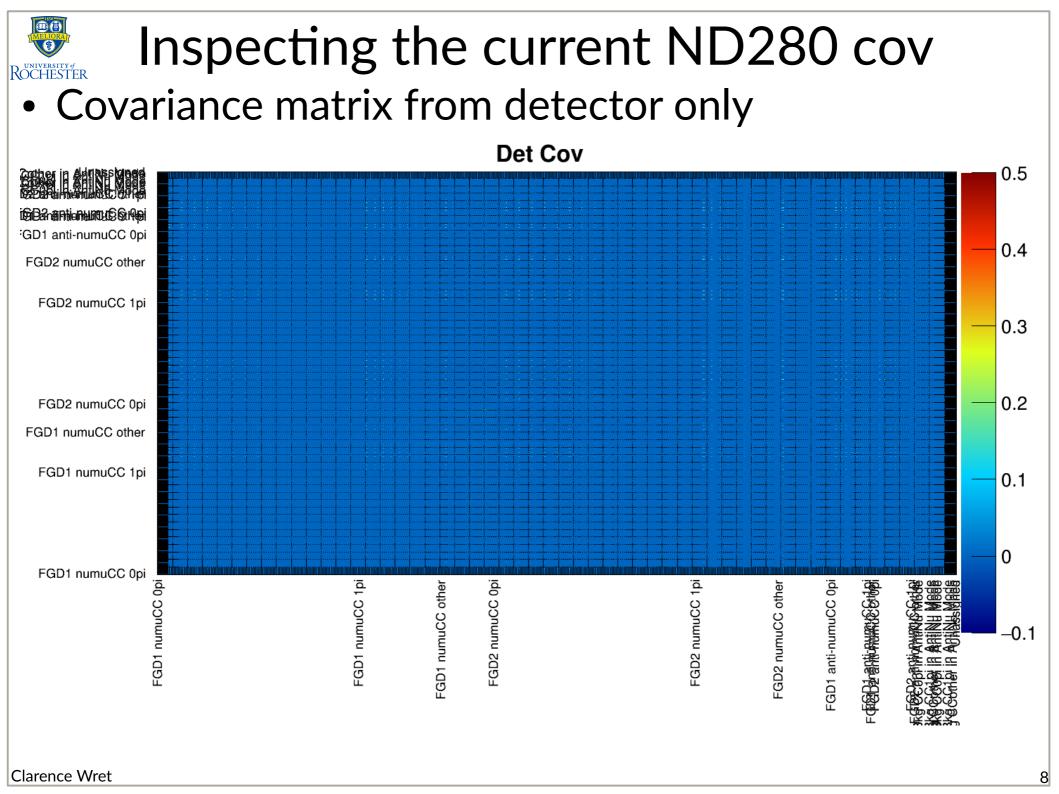
$$V = V_{ND280} + V_{MC \, stat}$$

- MC statistics added as 1/(ηn) in every bin, where (ηn) is the unscaled nominal weight generated MC
 - $-\eta$ is the POT scaling, n is the number of POT scaled events (that we actually use as a prediction in a bin)
 - Essentially, MC stat accounts for that we didn't generate infinitely much MC \rightarrow Uncertainty
- Adding covariances like this might be bad for PCA and bin merging: very different sources of covariance
 - Using merged binning for MC statistics uncertainty
- Can we separate out MC statistics in a better way?



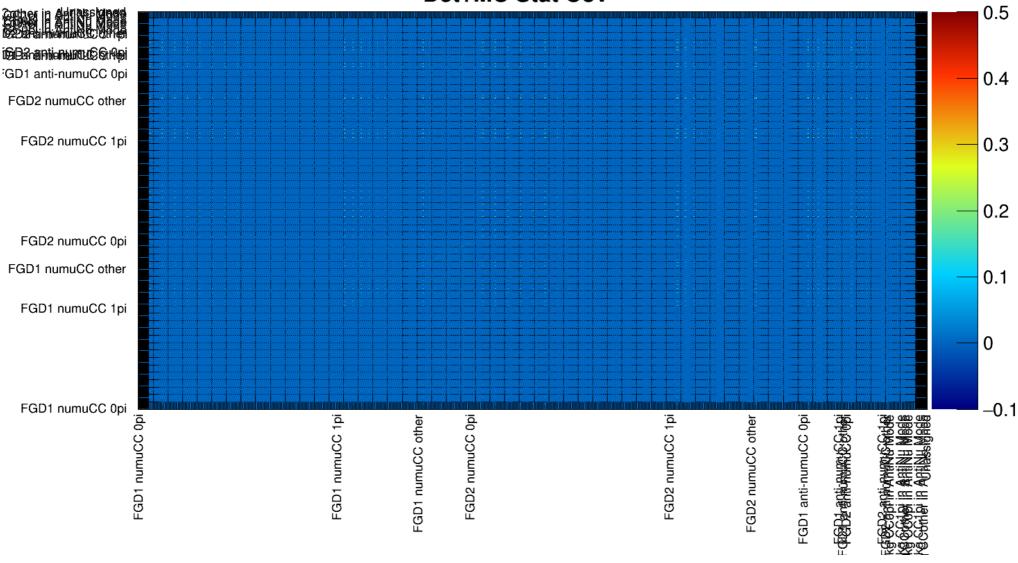


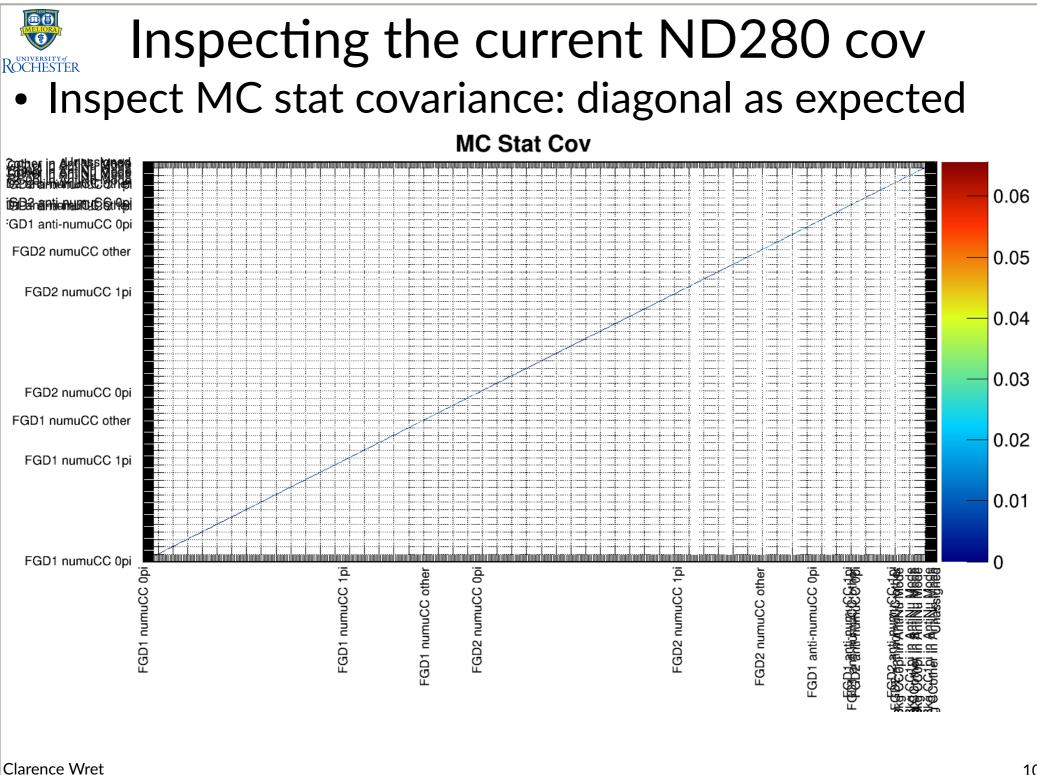


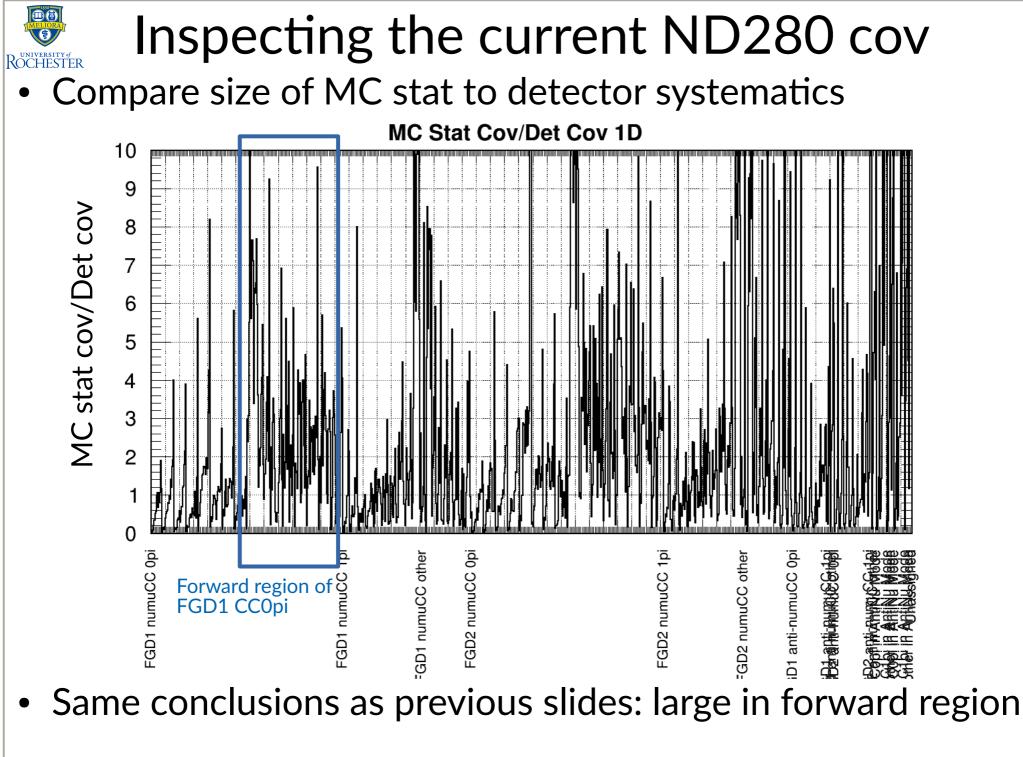


Inspecting the current ND280 cov

- Covariance matrix from det+MC stats only
 - Inflates the diagonal only
 Det+MC Stat Cov

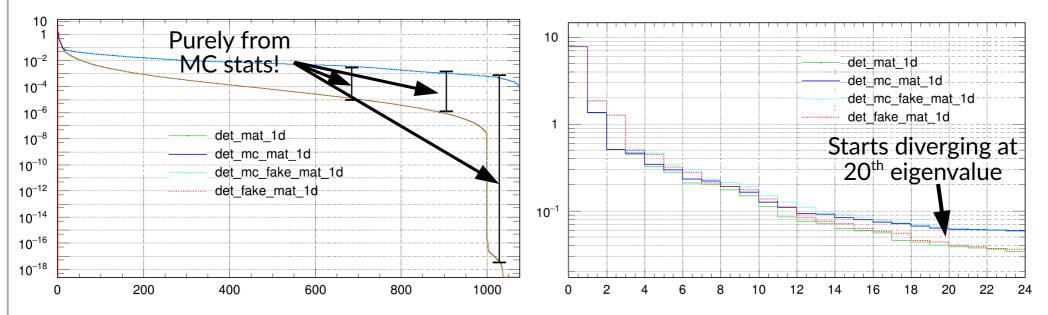






Inspecting the PCA of covariance

- Look at the size of eigenvectors for
 - Full matrix (ND280+1p1h+MC stats): det_mc_fake_mat_1d
 - Reduced matrix (ND280+MC stats): det_mc_mat_1d
 - Reduced matrix (ND280+1p1h): det_fake_mat_1d
 - ND280 only matrix: det_mat_1d



• Removing MC stats from covariance lessens eigenvalues by $O(100) \rightarrow$ Seems worthwhile

Introduction

- Need to modify χ^2 to account for MC statistics
- Most straightforward is Pearson with penalty
 - Assumes data distributed around MC as Gaussian

$$\chi^2 = (Data-MC)^2/(Data)$$

- Can additionally assume observed unscaled MC (η n) lays around true unscaled MC with uncertainty Δ MC = sqrt(MC)

$$\chi^2 = (Data-MC)^2/(Data+\eta n)$$

• Or use a Poisson for data and MC

 $\chi^2 = 2(MC-Data+Data \ln(Data/MC))$

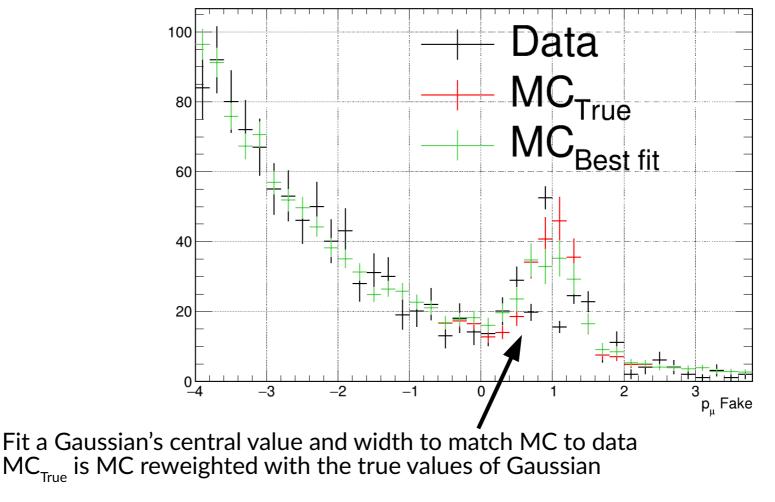
Introduction

- Neither method estimates true generated MC value
- Barlow-Beeston tries to do this: MC depends on systematic parameters and MC scaling parameters

$$MC^{i}_{true} = \lambda^{i} MC^{i}_{observed}$$

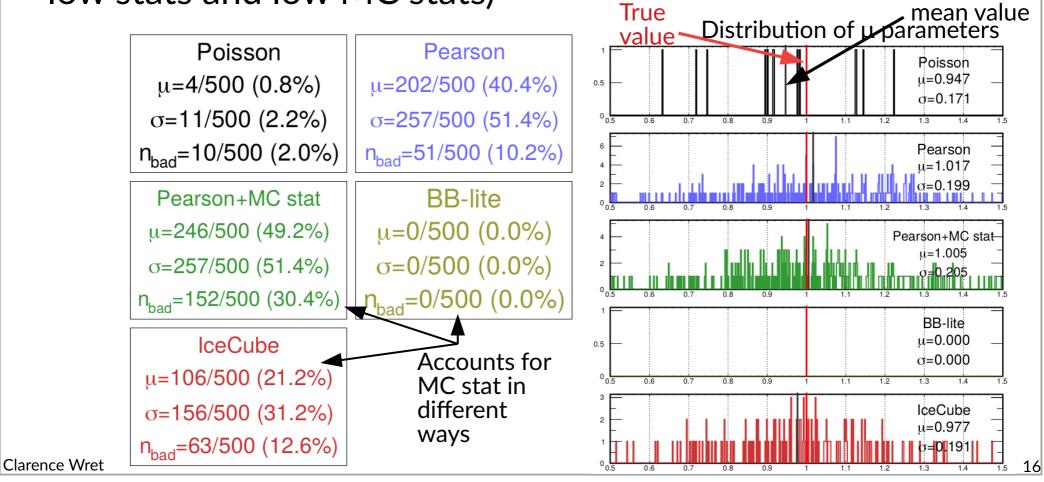
- Add this uncertainty into the likelihood contribution, modifying λ^i as to maximise the likelihood, taking updated MC^i_{true} into account in Poisson likelihood
- Easiest assumption is λ^i are Gaussian distributed around 1
 - Gives an analytic solution for every bin, solvable for every iteration of a fit \rightarrow No new parameters
- Full Barlow-Beeston requires introducing nbins parameters!
- IceCube authors have an additional likelihood, designed to do something similar, which I don't yet understand...

- Devised some testing scenarios using different likelihoods
- Make up some event distribution, randomise it, fit it!
- Here an exponentially falling distribution with Gaussian



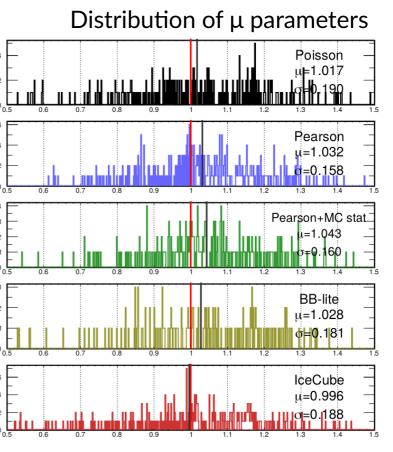
Rinse, repeat study for 500 toys, with different data statistics and MC/data ratios

- 100 data events, MC scaling of 2.0 (1.0 didn't converge)
- Surprisingly, Pearson does best by far
 - 30% fit failure but when succeeds has decent coverage
- But essentially uninteresting for us (ND280 doesn't have low stats and low MC stats)

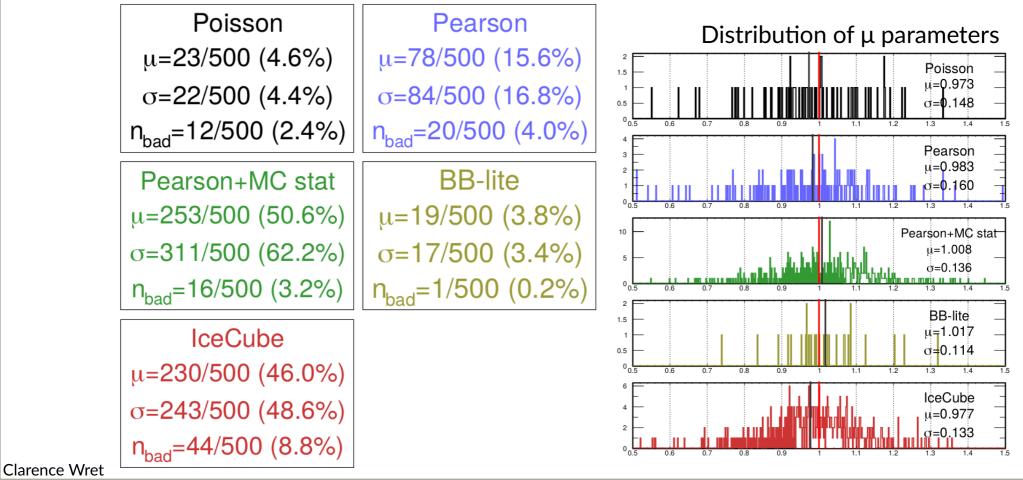


- 100 data events, MC scaling of 10.0
- Increasing MC statistics helps, but still pretty poor performance throughout
 - Need more data events to constrain two parameters





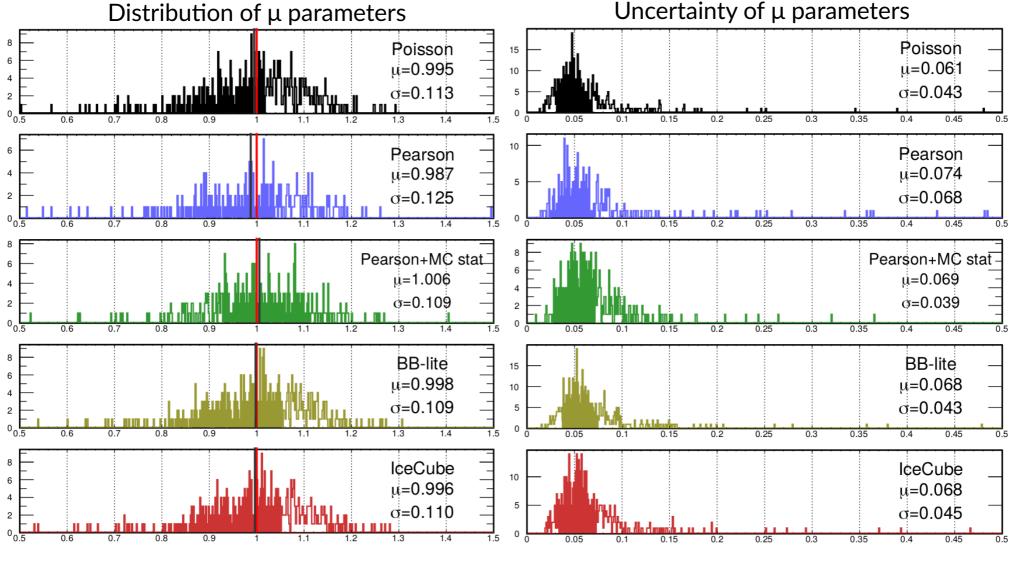
- 500 data events, MC scaling of 1.0
- Pearson+MCStat and IceCube perform well
- Need more for the other methods, including BB



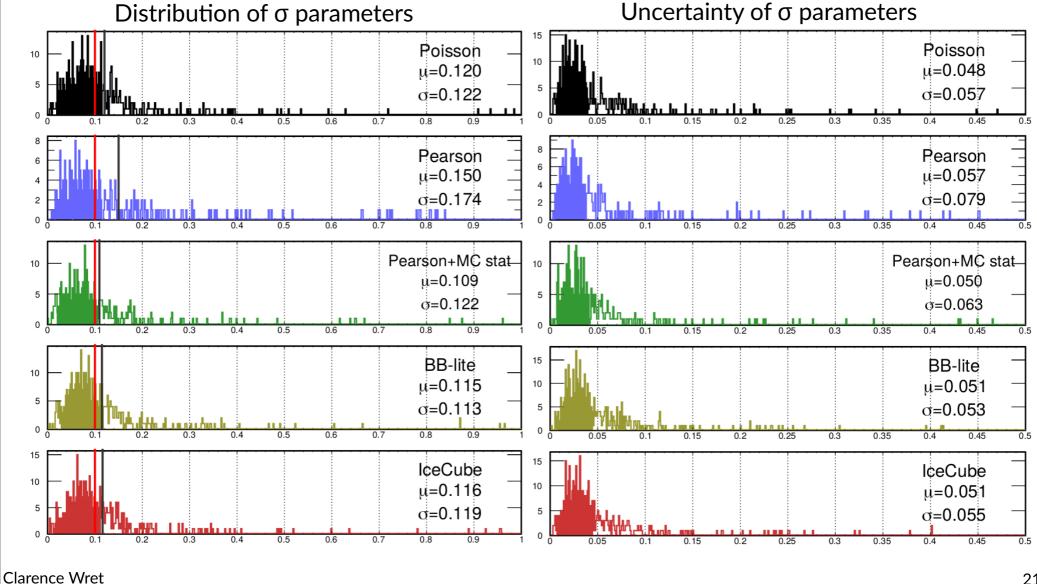
- 500 data events, MC scaling of 10.0
- Barlow-Beeston and IceCube are by far best

Poisson	Pearson
μ=191/500 (38.2%)	μ=121/500 (24.2%)
σ=226/500 (45.2%)	σ=153/500 (30.6%)
n _{bad} =36/500 (7.2%)	n _{bad} =19/500 (3.8%)
Pearson+MC stat	BB-lite
μ=179/500 (35.8%)	μ=222/500 (44.4%)
σ=196/500 (39.2%)	σ=266/500 (53.2%)
n _{bad} =97/500 (19.4%)	n _{bad} =30/500 (6.0%)
IceCube	
μ=217/500 (43.4%)	
σ=264/500 (52.8%)	
n _{bad} =28/500 (5.6%)	

- 500 data events, MC scaling of 10.0
- Barlow-Beeston and IceCube are by far best

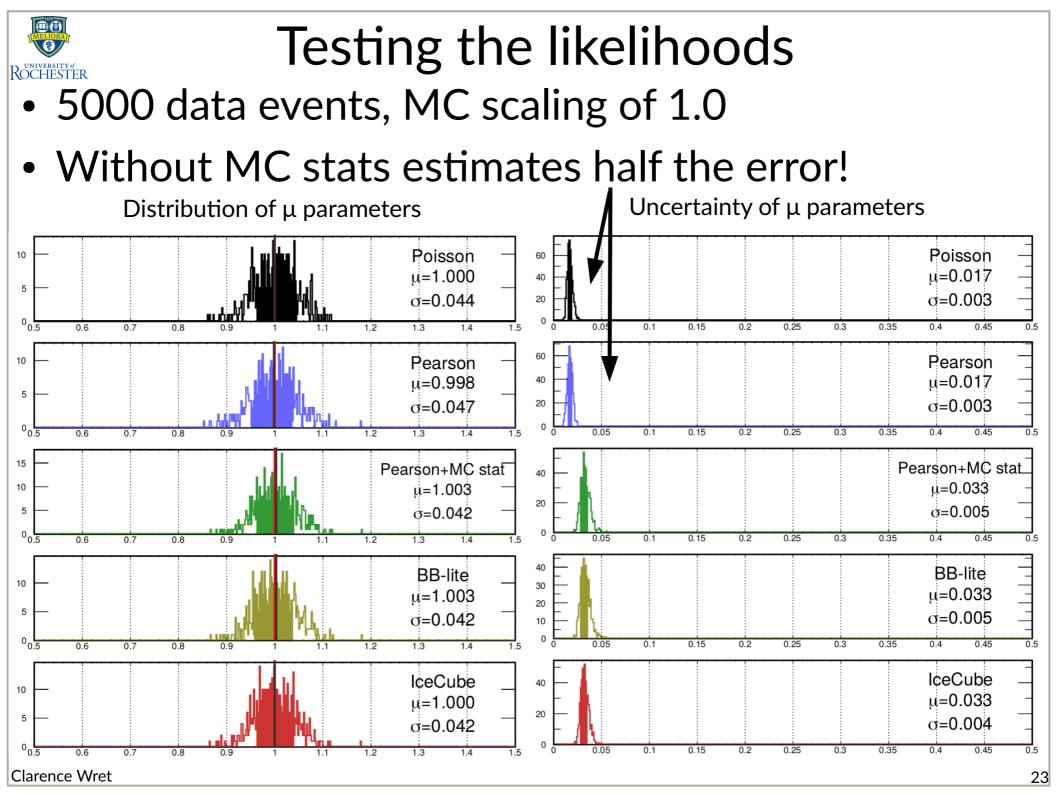


- 500 data events, MC scaling of 10.0
- Barlow-Beeston and IceCube are by far best

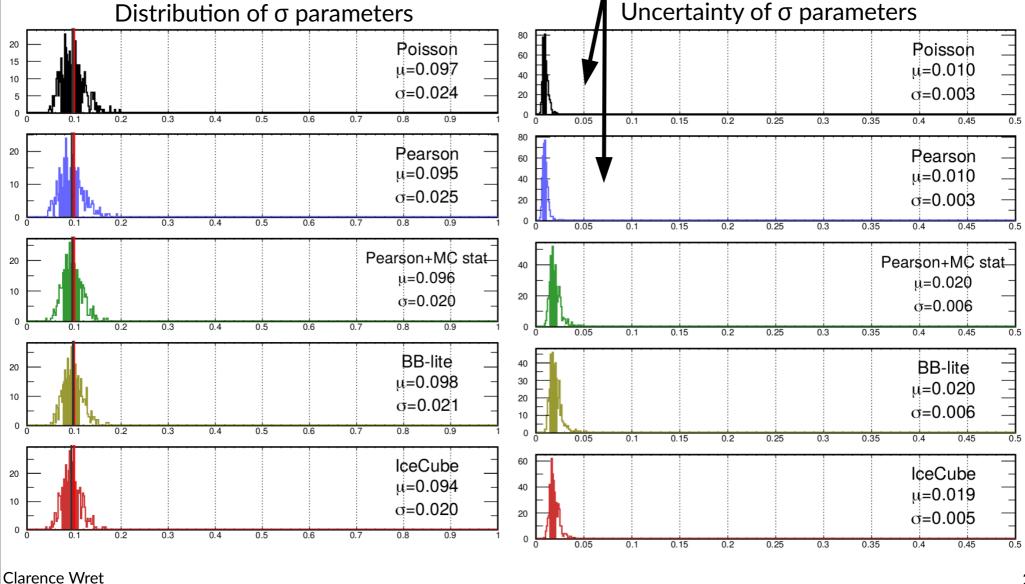


- 5000 data events, MC scaling of 1.0
- Methods that account for MC stats are similar

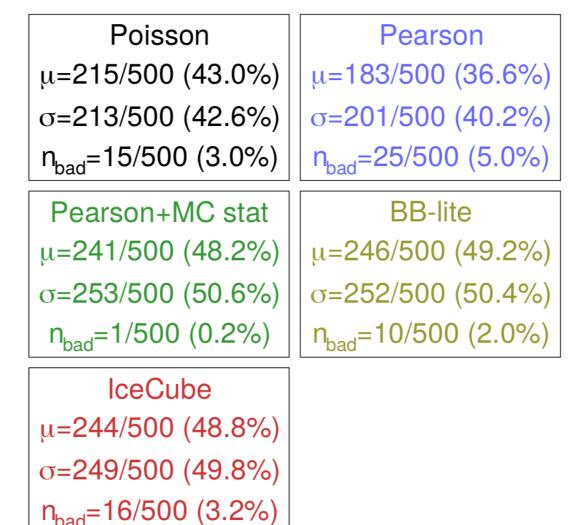
Poisson	Pearson
μ=142/500 (28.4%)	μ=122/500 (24.4%)
σ=147/500 (29.4%)	σ=144/500 (28.8%)
n _{bad} =28/500 (5.6%)	n _{bad} =21/500 (4.2%)
Pearson+MC stat	BB-lite
μ=269/500 (53.8%)	μ=263/500 (52.6%)
σ=322/500 (64.4%)	σ=313/500 (62.6%)
n _{bad} =1/500 (0.2%)	n _{bad} =16/500 (3.2%)
IceCube	
μ=265/500 (53.0%)	
σ=303/500 (60.6%)	
n _{bad} =13/500 (2.6%)	

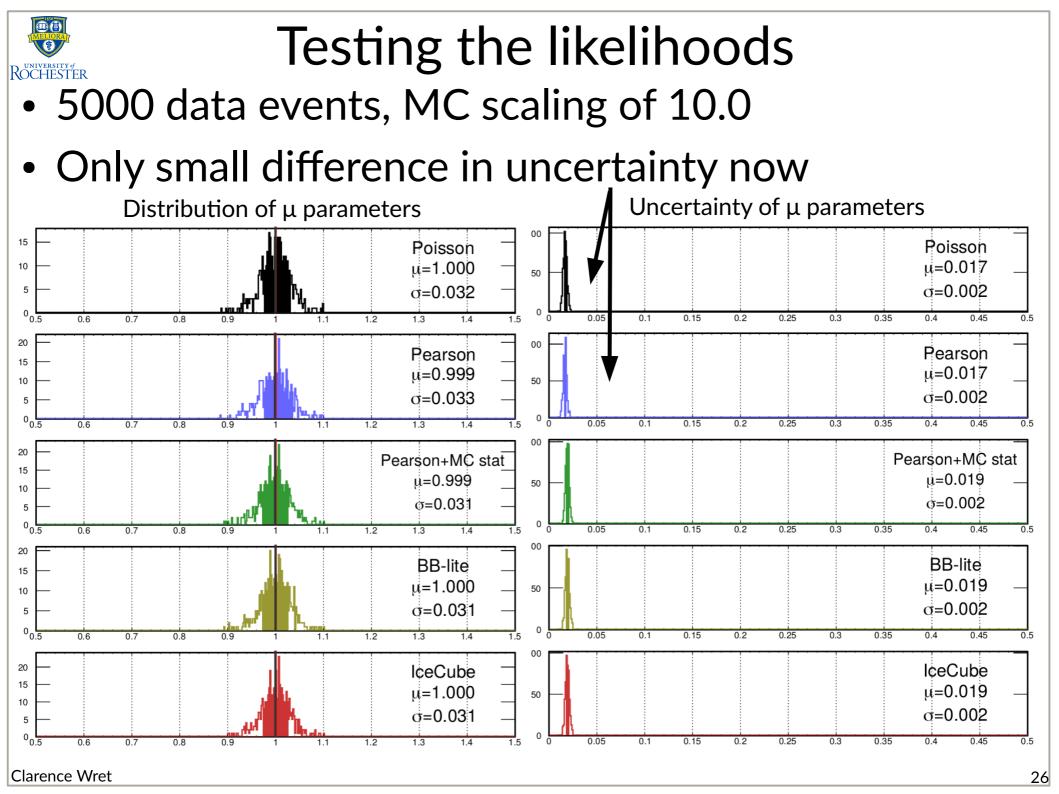


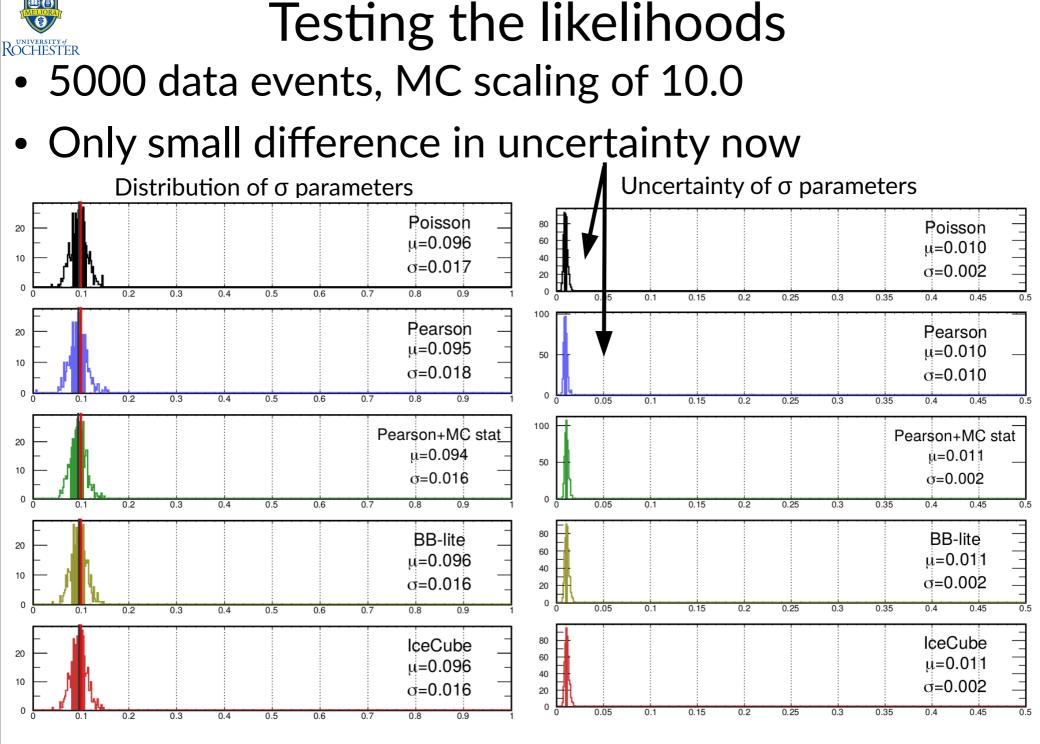
- 5000 data events, MC scaling of 1.0
- Without MC stats estimates half the error!



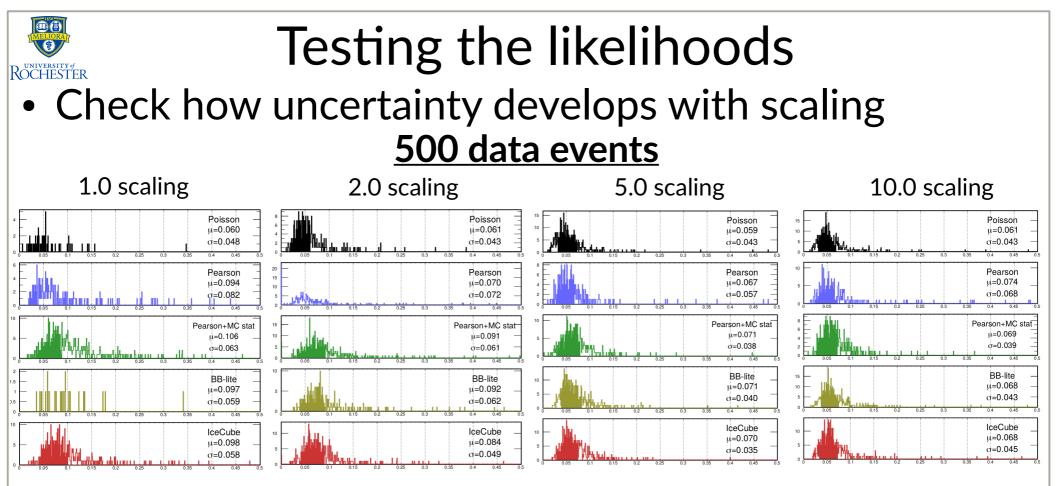
- 5000 data events, MC scaling of 10.0
- Methods that account for MC stats are similar
 - Other methods catching up











- Poisson estimates are constant, Pearson wildly changing \rightarrow Both are unreliable
- MC statistics methods have similar estimates
- MC statistics methods' estimate decrease with more generated MC

Summary

- Trying to reduce number of ND parameters in T2K ND fit
 - Better PCA, better merging, more stable fits/faster convergence
- Accounting for MC stats is central in producing unbiased intervals

- Can bias 1σ intervals by 100% in this test case

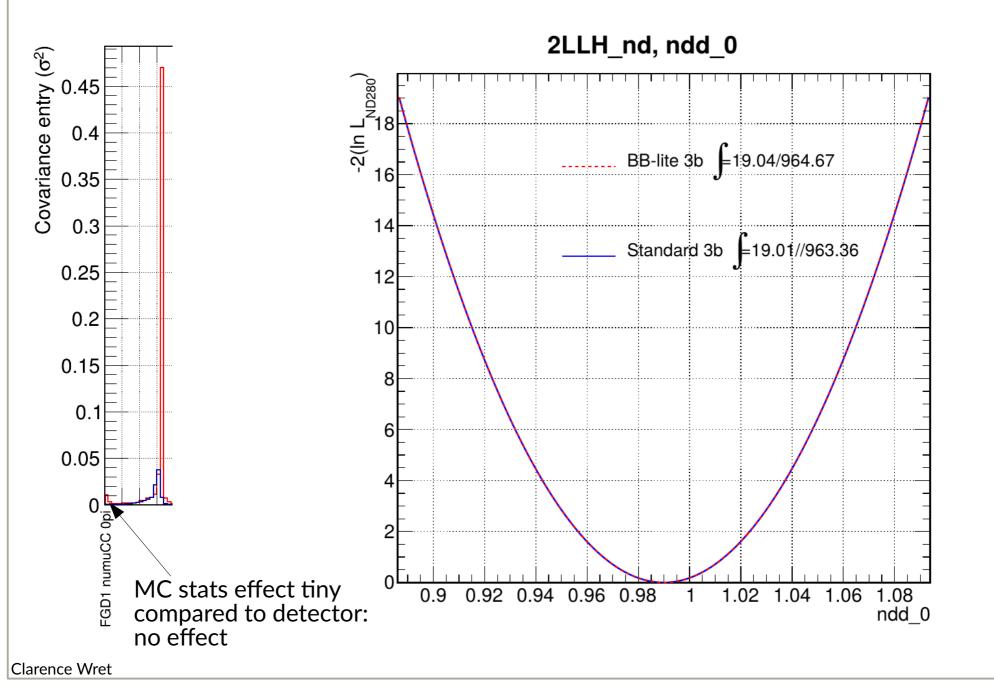
- IceCube likelihood seems best, but strangely large $\chi^{_2}$
 - Collaborators can reproduce this in his cross-section analysis, and authors say this is intended?! Not sure about this...
- BB-lite struggles in ultra-low MC stats: likely due to Gaussian assumption in scaling parameters
 - Seems to fail to converge instead of giving unreliable estimate
- Pearson+MC stats struggles at low MC stats
- My preference from these studies:
 - IceCube > BB-lite > Pearson+MC stats
- Caveat: methods introduce changing MC estimate \rightarrow discontinuous likelihoods? \rightarrow Minuit problems?

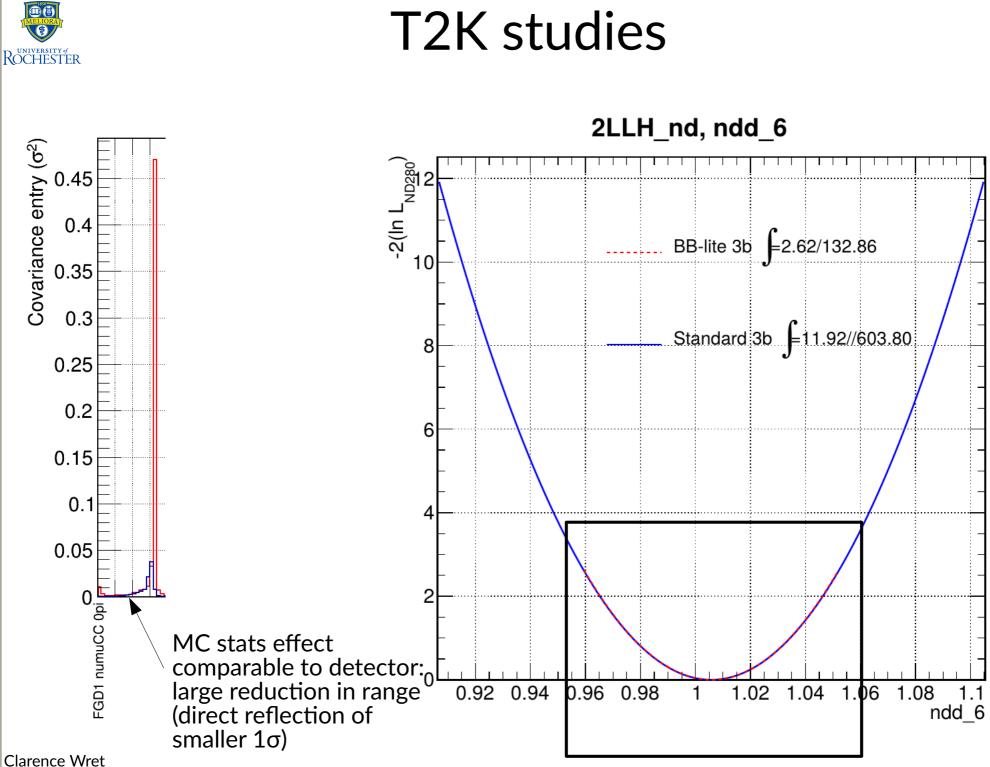
Thanks!

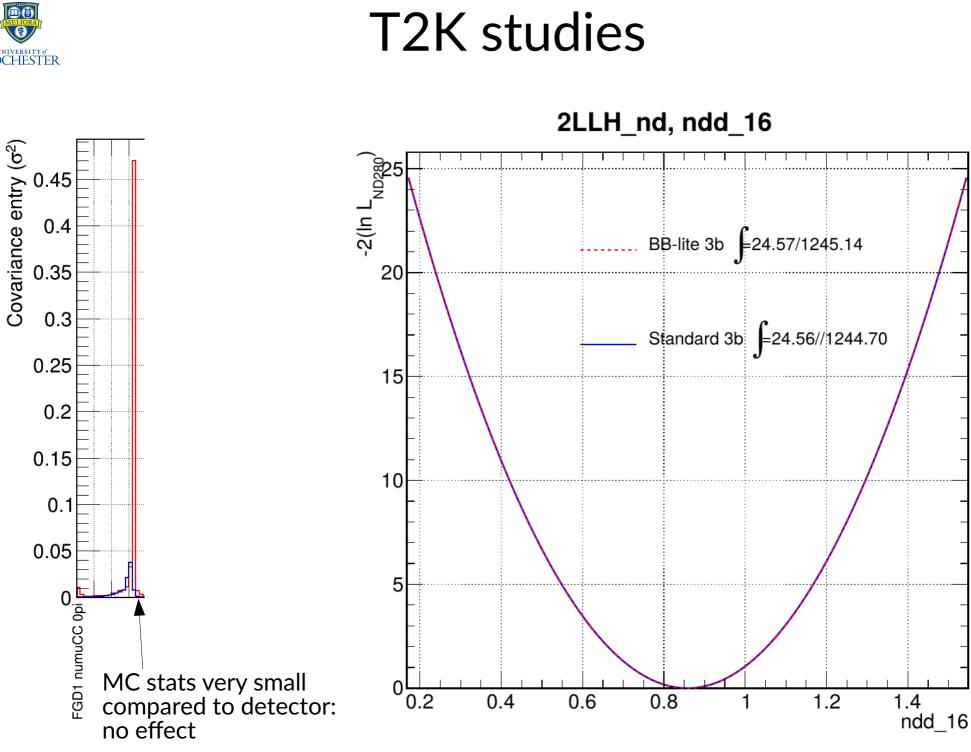
T2K studies

- Used reduced # of runs with/without BB-lite, with corresponding covariance matrix
 - Study should be completed with full MC statistics
- Comparing LLH scans: response to prior should be the same
- However, scan should run in narrower range since it starts at +/- 3 units of 1σ
 - By removing MC stats our 1σ range is smaller
 - Should see effect in regions where MC stat is dominant
- Start with comparing the prior

T2K studies

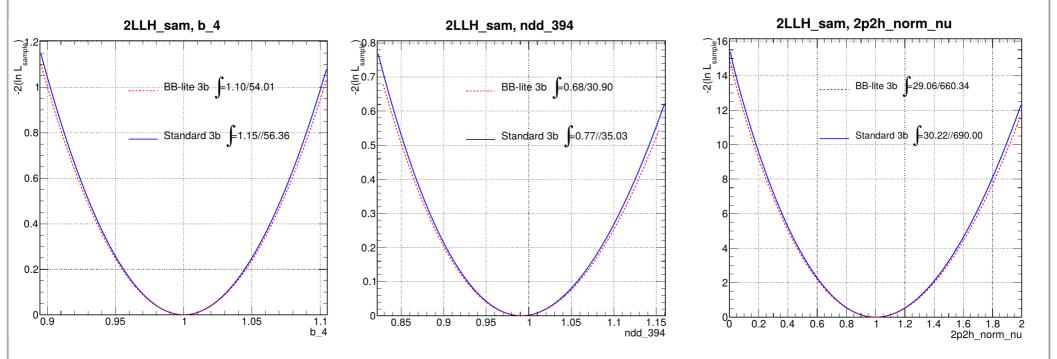






T2K studies

- Now look at the effect on the sample contribution
- Introducing MC statistics into the sample likelihood should lower the overall $\chi^{\rm 2}$



• Seems to be working as intended

Future and Summary

- Repeat studies for full ND280 MC
- Run some Asimov fits
- Figure out why ND280+1p1h Cholesky decomposes but ND280 only doesn't
- Hand over to Will who's producing the covariance matrix for next round
 - BB seems ok for us, but not great in low stat regions
 - Probably because of Gaussian assumption of scaling par.
- Get in touch with IceCube folks about their likelihood: why so large χ^2
 - Looks promising otherwise: much better in ultra low stat and does not require additional parameters
- Maybe OA folks want to port likelihood?