Constraining systematics at T2K with near-detector data

Using the 2016/7 analysis as an example

Clarence Wret

On behalf of ND280 fitting group Pittsburgh Tensions Workshop 2019 9 July 2019

Outline

- Need for near detector fits
- The T2K oscillation analysis chain
- Selections at ND280
- Systematics at ND280
- Making it all fit
- Looking forwards

Estimating SK event rates

 Number of predicted events at SK has dependence on flux and cross-section model

$$N_{SK} \sim \Phi_{SK} \left(E_{\nu} \right) \sigma \left(E_{\nu} \right) \epsilon_{SK} P(\nu_{\alpha} \to \nu_{\beta})$$

 Large systematics from flux and cross-sections: can be improved by fitting near-detector data
FHC v_.

						μ
	Pre	-BAN]	FF	Post	-BAN	FF
Group	Mean	1σ	%	Mean	1σ	%
Flux+Xsec constrained	250.34	35.35	14.12	266.68	8.60	3.22
All	250.95	35.71	14.23	267.78	11.79	4.40
					FH	IC v _e
	Pre-BANFF			Post-BANFF		
Crown	Moon	1 -	07	Mean	1 -	07

Group	Mean	1σ	%	Mean	1σ	%
Flux+Xsec constrained	62.09	7.18	11.56	63.97	1.74	2.72
All	62.18	7.31	11.76	64.17	2.41	3.76

Changes central value and uncertainty in SK event spectra

Estimating SK event rates

Allows for shape and normalisation changes of un-oscillated spectrum

Estimating SK event rates

- Use alternate model as "data" and fit with our model: "fake-data" studies
 - If we have model A but model B is actually nature, how do we bias our oscillation parameters?

Create "fake-data" at both ND280 and SK, propagate through oscillation analysis

Binning in E_ν for FHC(PF)/RHC(NF) ND280 and SK reflect flux shape
ν_μ PF/ν_μ NF: 0.0, 0.4, 0.5, 0.6, 0.7, 1.0, 1.5, 2.5, 3.5, 5.0, 7.0, 30.0

 $\bar{\nu}_{\mu} \text{ PF} / \nu_{\mu} \text{ NF: } 0.0, \, 0.7, \, 1.0, \, 1.5, \, 2.5, \, 30.0$

 $\nu_e \text{ PF}/\bar{\nu}_e \text{ NF: } 0.0, 0.5, 0.7, 0.8, 1.5, 2.5, 4.0, 30.0$

 $\bar{\nu}_e \text{ PF}/\nu_e \text{ NF: } 0.0, 2.5, 30.0$

- 14 topological event selections (data per FGD up to 2015)[†]:
 - <u>v</u>: CC0π (17000), CC1π (4500), CCOther (4000)
 - <u>Anti-v</u>: CC1Trk (2700), CCNTrk (800), CC1Trk v bkg (900), CCNTrk v bkg (1000)
- Selections are developed by the cross-section groups
- Constrains oscillation signal interaction (CC0 π) and backgrounds (1 π , CCOther or NTracks, neutrino in anti-neutrino)

CIALETICE VVIEL

Resolutions

- Unbiased above $p_{\mu} = 150 \text{ MeV/c}$, uncertainty between 50-100 MeV/c
- Above θ_{u} =70° angles is uncertain and biased

ND280 systematics

- Fit and systematics binned as normalisations in $(p_{\mu}, \cos\theta_{\mu})$
 - Less sensitive to nuclear effects or FSI (vs e.g. T_{π} or q_0q_3) but very good reconstruction in ND280
- Vary underlying ND280 detector parameters, e.g. TPC PID, B-field distortions, momentum scales (backups)

Desire to move to direct event-by-event detector re-weighting

- Significant computational overhead

ROCHESTER

Cross-section systematics

- Rapidly developing field: update model every analysis
- 2016/7 analysis: 31 systematics in NEUT MC
- 12 CCQE(-like) systematics:
 - M_A^{QE} is the only nucleon parameter
 - 2p2h shape and normalisation parameters, RPA shape and normalisation

- 3 CC1π on nucleon + 3 CC1π coherent parameters
- v_{μ}/v_{e} normalisation for neutrino and anti-neutrino
- 6 pion final state interaction parameters

CC DIS, CCOther, NCOther, NC1γ

Absorption

Pion Production

Setting up the fit

- Use constraints for all the flux and ND280 systematics
 - Developed by the beam group and selections group
- Cross-section parameters get external constraints from the Neutrino Interaction Working Group (NIWG)
 - Using external data with NUISANCE

- 2p2h norm for neutrino and anti-neutrino is different (1.5 vs 0.7)
- 1σ uncertainties are exceeded for RPA
- Our 2p2h shape parameter pushed to pionless-Delta-like

- Single pion pushed outside boundary: $M_A^{RES} = 0.8 \text{ GeV}$
- Pion FSI parameters OK
- Detector parameters OK (not shown here)

Some pre-fit plots

- Clear deficiencies across the samples
- Generally underestimate CC0 π , overestimate CC1 π

FGD1 CC0π FHC

FGD1 CC1π FHC

Some post-fit plots

- As expected we're not getting a perfect fit
 - Not templated as we're fitting theory parameters

- 2D distributions don't fit perfectly, notably for 1π and Other samples
 - 1π and multi- π modelling less sophisticated

Why is BeRPA pulled?

RPA parameters are being pulled strongly in the fit

- Resulting RPA correction very non-Nieves
- True for both the frequentist and Bayesian analyses

Clarence Wret

ROCHESTER

Post-fit evaluation

- Bayesian (MCMC) and Frequentist (Minuit) analyses for ND280-only
 - Propagate post-fit to SK as Gaussians from Frequentist analysis
 - Or fit ND280 simultaneously with SK data with MCMC
- P-value testing on the post-fit model
 - Decides if we abandon all hope and start from scratch

Bayesian posterior predictive pvalue, FGD2 CC0π: 10.9%

Post-fit evaluation

- Propagate cross-section constraints to external neutrino crosssection data
 - MINERvA CC-inclusive low recoil data worse post-fit

- Run large number of fake-data studies on plausible alternatives
 - How much do we bias oscillation parameters if model B is the perfect model but we're fitting using model A

- Post-fit correlations look reasonable (actually inspected in 2D)
 - Flux internally correlated and inversely correlated with crosssections

To look forward to

- Double neutrino and anti-neutrino data at ND280 in the can
 - Very interesting to see how fit develops
 - Need to continue emphasis on nailing down systematics
- More ND280 selections—better topology separation
 - Larger acceptance at ND280, including backward going
 - CC0 π , CC1 π , CCOther selections for anti-neutrino
- More interaction model developments
 - New 1p1h model
 - New 2p2h model
 - New single pion model
 - New multi-pi/DIS model
 - New initial state model
- Large systematic reductions from the beam group
 - New NA61/SHINE T2K replica target data
- GENIE fits?

Summary

- T2K uses a near-detector fit to estimate systematics for oscillation analyses at SK
- Uses 14 topological samples at ND280 in $(p_{\mu}, \cos\theta_{\mu})$
- Rapidly moving cross-section model
- Some cross-section parameters move outside the conservative pre-fit 1σ prescription, flux and ND280 parameters well behaved
- Two methods of propagating ND280 result: assume Gaussianity or do a simultaneous ND280 and Super-K fit
- More data in the can with new selections and systematics coming up

Thank you!

Likelihood

- Sample statistics modelled as Poisson
 - Nuisance parameters as Gaussians or flat

$$-\log \mathcal{L}_{\text{Total}} = \sum_{\text{Bins}} \left[\lambda(\vec{\theta}) - n + n \log \frac{n}{\lambda(\vec{\theta})} \right] + \sum_{\substack{\text{Systematics}}} \frac{1}{2} \left[(X_i - \mu_i) (V)_{ij}^{-1} (X_j - \mu_j) \right]$$

- About 750 parameters at ND280
- 12 selections at ND280, about 120 bins/selection 1400 fitting bins in $p_{\mu} \cos \theta_{\mu}$, 556 detector bins

2p2h shape

- Have Nieves 2p2h with leptonic tensor in NEUT
- No method of varying parameter other than normalisation
- Assume PDD-like (+1), non-PDD-like (-1), nominal shape: transition between them without interference terms in $q_0 q_3$ space

- Not covering Martini 2p2h, SUSA, SF, etc
- Martini covered by fake-data analyses at SK and inflating parameter errors

Cross-section systematics **1**

2017 analysis used 31 cross-section parameters

		Parameter	Nominal	Error	Prior	Type	Comment
		CCQE model	2	N/A	N/A	D	MDLQE = 2 corresponds
							to the RFG model.
		$SF \rightarrow RFG$	1	N/A	N/A	D	
		$M_{A_{OF}}^{QE}$ (GeV)	1.21	0-10	flat	В	
		$M_A^{QE} \bar{\nu}$ -H	1.03	0	N/A	D	
		(GeV)					
		$p_{\rm F} \stackrel{12}{\sim} C (MeV)$	217	31	flat	В	
		$p_{\rm F} {}^{16}{\rm O} ({\rm MeV})$	225	31	flat	В	
	$CC0\pi$	$^{2p2h norm.}$ $\nu^{-12}C$	1	1	flat	в	
		$^{2p2h norm.}_{\overline{\nu}-^{12}C}$	1	1	flat	В	
		² p2h norm. ¹² C to ¹⁶ O	1	0.2	flat	в	
		2p2h shape $\nu^{-12}C$	0	1	flat	B (or N)	
		2p2h shape $\nu^{-16}O$	0	1	flat	B (or N)	30% correlated with 2p2h shape ν− ¹² C
		BeRPA A	0.59	0.118	gauss.	в	chapter o
		BeRPA B	1.05	0.21	gauss.	В	
		BeRPA C	1.13	0.17	gauss.	В	
		BeRPA D	0.88	0.352	gauss.	В	
		BeRPA U	1.2	N/A	N/A	D	
		$M_{\Lambda}^{1\pi}$	1.07	0.15	gauss.	В	correlations in Fig.48
	RES	C_5^A	0.96	0.15	gauss.	В	correlations in Fig.48
		I = 1/2 Bkg.	0.96	0.40	gauss.	В	correlations in Fig.48
		CC coh.	reweight	0.3	gauss.	В	E_{π} weights are applied
		norm. ¹² C	_				according to Table 12.
		CC coh.	E_{π} weights	0.3	gauss.	В	Fully correlated with ¹² C
	Other	norm. "O	0.0	0.4		P	
		CC other	0.0	0.4	gauss	в	
		NC coh	1.0	0.3	maniec	в	
		norm	1.0	0.5	gauss.	Б	
		NC 1~	2.0	2.0	ganee	R	
		NC Other	1.0	0.3	gauss.	NF	The NC other dial is
			1.0	0.0	Sauss.	,.	treated separately at the
							near and far detectors.
		$CC \nu_e / \nu_\mu$	1.00	$\sqrt{2} \times 0.02$	gauss.	F	2% anticorrelation between
				_			these two dials Sec.7
		$CC \bar{\nu}_e / \bar{\nu}_\mu$	1.00	$\sqrt{2} \times 0.02$	gauss.	F	
	Pion FSI					N,F	see Sec. 5

Clarence Wret

ROCHESTER

ND280 systematics

- Variation systematics
 - Have the ability to migrate events between selections
- B-field distortion
- TPC Momentum scale
- TPC Momentum resolution
- TPC PID
- FGD PID
- ToF resolution (FGD1-FGD2)
- ECal Momentum scale (barely used)
- ECal Momentum resolution (barely used)

ND280 systematics

- Michel electron efficiency
- TPC cluster efficiency
- TPC and FGD track efficiency
- FGD hybrid track efficiency
- FGD-TPC matching efficiency
- Pile-up
- FGD mass
- Out of fiducial volume
- Sand muon
- Pion and proton secondary interactions

Error envelopes FHC v_e CC0 π

Error envelopes FHC v_{μ} CC0 π 1 decay e

Error envelopes RHC v_e CC0 π

