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Abstract

This document describes the implementation of model updates in MaCh3 frame-
work, MaCh3 results of the updated sensitivity (Asimov A fit), and fit to the real data
of T2K near and far detector beam samples combined with the SK atmospheric sam-
ples. Comparisons to T2K OA2020 and joint-fit results from the P-Theta group are
also documented. This analysis uses 1.1531 x 102! POT in FHC and 8.336 x 10?° POT
in RHC for the near-detector fit corresponding to runs 2-9, 1.9664 x 102! POT in FHC,
1.6346 x 102! POT in RHC corresponding to T2K far detector beam runs 1-10 and
the full SK-IV livetime of 3244.4 days. Asimov and data fit results include smearing
of Am3, from fake-data studies, and results with and without reactor constraint are
studied. The impact of a flat prior on sin dcp and a flat prior on dcp is also studied for
the Jarlskog invariant.

The fit to data with the reactor constraint on sin? #;3 applied finds a Bayes factor of
normal ordering over inverted ordering B(NO/IO) of 7.33. This compares to the T2K
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results of B(NO/IO) = 4.2 in the 2020 analysis. dcp = 0, 7 is excluded above 20 with a
flat prior on d¢p and the 20 level is just included with a flat prior on sin dcp. A Jarlskog
invariant of J = 0 is excluded above 20 with a flat prior on d¢p, and is just excluded at
20 with a flat prior on sindcp. The Bayes factor B[(sindcp < 0)/(sindep > 0)] is 50.0
with the reactor constraint applied and a flat prior on dcp. The Bayes factor of upper
octant over lower octant B(UO/LO) is 1.78, which shows a weaker preference of the
upper octant compared to OA2020 [1] (B(UO/LO) = 3.36), due to SK’s preference for
lower octant and T2K’s preference for upper octant. The posterior predictive p-values
find that the samples are well-predicted by the model, with an overall p = 0.42 for the
rate-based p-value, and p = 0.11 for the shape-based p-value.
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1 Introduction

This note documents the results and discussion of the joint-fit of near detector samples
(ND280 data from runs 2-9) and far detector samples (5 T2K beam samples from runs 1-10
and 18 SK atmospheric samples of 3224.4 days from SK-IV) performed in MaCh3 framework.

MaCh3 is an oscillation fitter which uses Bayesian inference and Markov chain Monte
Carlo (MCMC) to sample the posterior probability in the high dimensional systematic phase
space and using marginalisation to estimate the oscillation parameters posterior probability
distributions in the T2K experiment. It is extended to simultaneously fit SK atmospheric
and T2K near and far detector samples [2]. Running MCMC for smooth enough contours
requires a large amount of computing resources. For results presented in this note, we utilized
both the GPU and CPU resources from ComputeCanada clusters and Summit cluster.

The joint fit samples are discussed in further detail in TN428 [3]. The oscillation prob-
ability calculation method is documented in TN425 [1]. The joint-fit flux and cross-section
model originally described in TN422 [5] and is updated in TN456 [6]. This work is based
on the updated joint fit model and the implementation of the updates in MaCh3 framework
is documented in Sec. 2. The analysis methods in this work are mostly the same as in the
sensitivity studies documented in TN426 [2] and this note studies the sensitivity with the
model updates, and the data fit.

Sec. 3 describes the Asimov A fit results for both with and without reactor constraint
of sin?#,5. Both one dimensional and two dimensional contours of oscillation parameters
are presented. In addition, the Jarlskog invariant posterior probability distributions are also
presented. Bayes factors of octant hypotheses, mass ordering and CP violation are calculated
and discussed.

Sec. 4 describes the data fit results for both with and without reactor constraint of
sin?#;5. Both one dimensional and two dimensional contours of oscillation parameters are
presented. In addition, the Jarlskog invariant posterior probability distributions are also
presented. Bayes factors of octant hypotheses, mass ordering and CP violation are calculated
and discussed. Effect of reactor constraint is discussed by overlaying the contours with and
without the constraint. Finally, the joint-fit data fit results (with reactor constraint) are
compared to OA2020 MaCh3 results (T2K-only fit, see TN393 [1]).

Sec. 5 describes the comparison of the joint-fit data fit results between MaCh3 and P-
Theta as well as OA2020 results (TN393 [1] and TN397 [7]). Discussion of the results

differences between fitters is documented as well.
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2 Model updates implementation in MaCh3

This section describes the implementation of model updates in the MaCh3 framework. The
motivation of the updates can be found in the joint-fit model updates TN456 [6]Sec. 2. All
involved systematics can be found in the joint-fit fitter validation TN471 [3] (Tab. 6, 7, 8).

2.1 Updates of atmospheric detector errors

Joint-fit analysis decides to use the same fiTQun version and CCQE model for SK and
T2K samples as T2K official analysis. Hence, SK atmospheric detector errors need to be
re-evaluated. The atmospheric detector errors are hard coded in MaCh3 and thus updating
the values is straight-forward. The updated errors are documented in Sec. 3 of TN456 [0]
and validated through fitter validation recorded in TN471 [3].

2.2 Treatment of SubGeV 1Relde excess

To deal with the data/MC discrepancy observed in down-going SubGeV CClpi dominated
sample, three different ways are adopted. Details are documented in Sec. 4.4 from TN456 [0].

2.2.1 Updated Adler angle dials

The ad-hoc Adler angle uncertainty was introduced in the model for the sensitivity study
last year. In the latest model, the previous Adler angle dial is split into two dials with
different dependence on lepton momentum. The parameterization and prior constraints are
also changed.

New splines are generated using the same weight files as P-Theta (see Sec. 4.4.4 in
TN456 [6] v1.1). The Adler angle dials are implemented as splined cross-section systematics
that apply to CClpi and NClpi true resonance interaction modes (including both charged
and neutral pion) for all beam samples and atmospheric SubGeV samples. Validation is
done and documented in fitter validation TN471 [3].

2.2.2 New SK PID errors

To account for the potentially poor performance of e/ PID at low lepton momentum for
CClm dominated samples, two 50% correlated systematics are developed (see TN456 [6]).

Two migration dials are implemented; one moves events between the atmospheric single ring
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one decay electron and muon-like samples, and the other moves events between the beam
FHC 1Relde and FHC(RHC)1Rmu samples.

Technically, these two systematics are implemented in the same class as the correlated
detector systematics and the lack of correlation is coded between them and other detector

systematics.

2.2.3 MC with new decay electron cut

The T2K MC was produced with a new cut on the delayed hit clusters reconstructed by
fiTQun to reduce the background from neutron capture signals in tagging decay electrons.
Similarly, the SK ATMPD group updated the atmospheric MC with this new cut. Thus, the
input MC for joint-fit is now updated with this new cut.

Technically, MaCh3 updates a few reconstructed fiTQun variables in the reading in MC
inputs process accordingly. Same input is used by other fitters in joint-fit and event rates

validation between fitters is done.

2.3 Correlated far detector systematics

The motivation and validation of the correlated far-detector model are documented in Sec.
5 of TN456 [6]. In the current MaCh3 framework, systematics are divided into un-correlated
groups so that each group has its own class to store all the necessary methods. To implement
this correlated model, a new class of the correlated detector systematics has been developed
to implement the correlation, which inherit most of the methods for each class of systematics
from the previous un-correlated model. The validation of this implementation can be found
in the fitter validations, documented in TN471 [8].

MaCh3 uses different sets of T2K beam detector systematics compared to P-Theta and
Osc3++ due to the different fit-binning variables used in MaCh3 and P-Theta (documented
in TN456 [0]). MaCh3 uses the set of systematics binned in reconstructed energy for all T2K
beam samples (TN456 [6] Tab. 8) while P-Theta and Osc3++ bin in reconstructed lepton
momentum for beam e-like samples and reconstructed energy for beam muon-like samples
(TN456 [6] Tab. 9).

Another technical difference is that the covariance matrix of the SK detector systematics
used in MaCh3 and P-Theta are different in that MaCh3 does not absorb the effect of
secondary interaction and photo-nuclear systematics into the matrix while P-Theta does.

The SI and photo-nuclear systematics in MaCh3 are instead implemented in another class
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dedicated to cross-section systematics. This has no impact on physics conclusions in the
oscillation analysis, but should be kept in mind when comparing the impact due to difference

classes of systematics.

3 Results from fitting Asimov data

The “Asimov data” refers to the far-detector predictions built by reweighting the simulated
far-detector samples using the post-BANFF tune, and applying the set of known oscillation
parameters in Tab. 1. The set of oscillation parameters named “Asimov A” are applied
to produce all results shown in this section. The parameter sets are the same as used in
the sensitivity studies TN426 [2]. The Asimov studies are present for two main purposes:
validation of the analysis (since the parameter set that generated the data is known), and

to provide an estimate of the sensitivity assuming no statistical fluctuations.

Parameter Asimov A Asimov B
sin? 05 0.307 0.307
sin? O 0.528 0.45
sin? 6,5 0.0218 0.0218

Am?, (eV?) | 7.53 x 107° | 7.53 x 107°
Am2, (eV?) | 2.509 x 1072 | 2.509 x 1073
Scp —1.601 0.0

Table 1: Oscillation parameter sets Asimov A and B, set A is used throughout this analysis.

When running an Asimov fit, MaCh3 fits the far-detector Asimov data and the near-
detector real data simultaneously. Hence, the results are comparable to the P-Theta Asimov
studies using the post-BANFF data fit constraints, with the small caveat of there being
slightly different approaches in MaCh3 and BANFF’s ND treatment. The full MaCh3 ND
treatment can be found in the near-detector fit note, TN395 [9], and some details specific to
the joint fit with SK are provided in the sensitivity studies note, TN426 [2].

Due to the model updates—especially the correlated detector systematics—work was
done to ensure reasonable behaviour of the MCMC fitting technique of all systematics by
looking at the traces of total negative log-likelihood (-LLH) and parameter values, and the
autocorrelations for all parameters, from a series of test chains. The aim of the tuning was
to achieve 0.2 autocorrelation after 20,000 lag, with no parameters behaving significantly

differently to others whilst maintaining high acceptance rates. This aim was achieved.
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The Markov Chains were computed such that one chain started from where a previous
chain stopped due to the wall time of the computing clusters. The deepest chains were
550,000 steps deep. For the Asimov fit, a total of 384 independent chains were run in
parallel, producing 203,320,244 steps in total including the burn-in period of 80,000 steps
per independent chain. This gave 172,599,860 steps after burn-in in total. For results shown
in this section, only post burn-in steps are used. Good acceptance rates (~ 16 — 20%) and
relatively short burn-in periods (80,000 steps) were achieved. The trace of the total negative

log-likelihood of all chains for the Asimov A analysis are shown in Fig. 1.
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Figure 1: Collection of the traces of the negative log total likelihood from 384 independent
chains in the Asimov A fit. The red vertical line shows the chosen burn-in cut at 80,000
steps.

This section first presents Asimov results with the reactor constraint applied, and then

without it applied.
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3.1 Results applying the reactor constraint

For these results, the reactor constraint on sin’#;5 is used with the same value as the T2K
OA2020 analysis TN393 [1] from the PDG [10]; sin® §;3 = 0.0218 + 0.0007.

3.1.1 Parameter constraints

Each parameter constraint in this section is shown in normal ordering (AmZ, > 0), inverted

ordering (Am2, < 0), and over bother orderings.

One-dimensional posteriors Fig. 2, Fig. 3, Fig. 4 and Fig. 5 show the marginalised
one-dimensional posterior probability for dcp, Am32,, sin 13 and sin? fy3, respectively.

For the d¢p result, sin dop = 0 is excluded at exactly 20 over both orderings. For sin? fys,
the correct octant is found, although both octants are well within the 1o credible interval in

both orderings.

With reactor constraint, Normal ordering With reactor constraint, Inverted ordering With reactor constraint, both orderings
x107° x10° x107%
2 g T T T T TR 2> AR AR RS AR RRRRERARRE" 2 E‘HH‘HH‘HH“H“HH‘HH‘E
% 16 E Credible intervals % 25~ Credible intervals % 18 Credible intervals
o L flat prior on 3, o F flat prior on , a E flat prior on &
) F cp 3 cP 3 16 F cp
o 14 S S [
= L = = 14
2 1L 2 K] E
) = = .
2 F a o 12f
@« r 7] 7] L
o 10 (o] o L
o a g 10F

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 2: dop for the Asimov A analysis, with the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings.
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With reactor constraint, Normal ordering With reactor constraint, Inverted ordering With reactor constraint, both orderings
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Figure 3: Am2, for the Asimov A analysis, with the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings.
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Figure 4: sin? 6,5 for the Asimov A analysis, with the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings.

With reactor constraint, Normal ordering With reactor constraint, Inverted ordering With reactor constraint, both orderings
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Figure 5: sin? a3 for the Asimov A analysis, with the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings.
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The Jarlskog invariant The posterior distribution of Jarlskog invariant, which is defined
as:

2 .
J = $13C€13512€12523C23 SII dcp (1)

where s;; refers to sin0;; and c;; refers to cos6;;. More detailed description can be found in
TN393 [1] (Appendix H in v9).

Fig. 6 and Fig. 7 show the marginalised Jarlskog invariant (.J) posterior for normal
ordering, inverted ordering and both ordering with flat prior on d.p and sin dcp, respectively.
As in the mainline T2K analysis, the marginal likelihood for J is computed after the MCMC
is run by computing J for each step in the chain after burn-in.

As was found in Fig. 2, sindcp = 0(J = 0) is just excluded at 20 credible interval over
both orderings with a flat prior in dcp. For the prior flat in sindep, J = 0 is included in the

20 credible interval.

Jarlskog invariant, normal ordering Jarlskog invariant, inverted ordering Jarlskog invariant, both orderings
x107° x10° x10°
2 L . K 2 £ . . 2 0 . .
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o F e C [ L
S 50 1o 26 S 70F o 20 = sof 1o 2
o r o £ =} r
5 F 5 60 T f
7 AOF 30 >30 @ E 30 >30 @ 40F 30 >30
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J = 5,407581,C155,3C,35INS J = 5,4C7381,C15523C235ING J = 5,4C1351,C15525C235IN0

Figure 6: J for the Asimov A analysis, with the reactor constraint applied, for normal (left),
inverted (center), and both (right) orderings, with a flat prior on d¢p.

12



Jarlskog invariant, normal ordering Jarlskog invariant, inverted ordering Jarlskog invariant, both orderings
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Figure 7: J for the Asimov A analysis, with the reactor constraint applied, for normal (left),
inverted (center), and both (right) orderings, with flat prior on sin dcp.
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Two-dimensional posteriors Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 12, Fig. 13 and Fig. 14
show the two-dimensional marginal posteriors for dop — sin® i3, 6op — sin? o, dop — Am3,,
Am2, — sin? 013, Am2, — sin? O3, sin? 013 — sin” O3 and sin® fo3 — Am2,, respectively. These
are shown separately for normal ordering, inverted ordering and both orderings, all applying
the reactor constraint.

It is evident that the current MCMC statistics is not sufficient for 3o credible intervals in
2D with the current binning in the oscillation parameters. No statement is based on the 3o

confidence interval, so computing resources were not allocated to ensure stable 30 contours.

With Reactor Constraint, Normal Hierarchy With Reactor Constraint, Inverted Hierarchy With Reactor Constraint, Both Hierarchies
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Figure 8: d¢p — sin? 63 for the Asimov A analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings.
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Figure 9: dop — sin? O3 for the Asimov A analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings.
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Figure 10: dcp — Am3, for the Asimov A analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings.
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Figure 11: Am2, — sin? ;3 for the Asimov A analysis, with the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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Figure 12: Am2, — sin? fy3 for the Asimov A analysis, with the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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Figure 13: sin? 65 — sin® fo3 for the Asimov A analysis, with the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.

With Reactor Constraint, Normal Hierarchy With Reactor Constraint, Inverted Hierarchy With Reactor Constraint, Both Hierarchies
-3 3 -3 -3 3 -3
N;zgl e 2R g 0T g0
> [ Credible intervals, flat prior on &, = E [ Credible intervals, flat prior on &, 0.5 = % F @ 2
Y 28[F 04 ® ,22¢ [ N [
gL IProb4 -1 20 30 S e L IProb. -1 20 30 € g °f 128
< 271 0355 J -23fF 048 I E a
E = E . r 1=
E ! 03 -2 E Re] 1 K]
26F / S5 2.4 F 5 ¥ 5
£ | 025}7; E 03 @ [ Credible intervals, flat prior on 3., 08 @
251 & -25F g o &£
F \ 02 F r IProb. - 20 30 06
24 - 2.6 - 0.2 C
F 0.15 E -ir
23F o1 27F r 04
[ : L 0.1 oL
22F 0.05 2.8 r I 02
£ £ E >
3 T I T I W 0 oo ) P P O P N P
035 04 045 05 055 06 065 035 04 045 05 055 06 065 035 04 045 05 055 06 065
sin” 6,, sin 6,5 sin” 8,,

Figure 14: sin? 3 — Am2, for the Asimov A analysis, with the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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The Jarlskog invariant Fig. 15 and Fig. 16 show the two-dimensional .J — sin? fla3 poste-
riors for normal ordering, inverted ordering and both orderings, with a flat prior on dcp and
sin dcp respectively. Fig. 17 shows the two-dimensional J — d.p posteriors for the orderings,
with a flat prior on dcp.

As expected from the one-dimensional result in Fig. 6 and Fig. 7, the flat prior on sin d¢p
results in a weaker constraint at 1o credible interval. However, at 20 level the two are very
similar, and at 3o level the result with a flat prior on sin dcp is slightly narrower than that
with a flat prior on dep. The correlation between J and sin? fy3 remains similar to that seen

in T2K’s analyses.
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Figure 15: J — sin?fy3 for the Asimov A analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings, with a flat prior on d¢p.
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Figure 16: J — sin® A3 for the Asimov A analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings, with a flat prior on sin dcp.
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Figure 17: J —dcp for the Asimov A analysis, with the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings, with a flat prior on dcp.
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an 3.1.2  Triangle plots

2 Fig. 18, Fig. 19, and Fig. 20 show the one and two-dimensional oscillation parameters’
213 posteriors, displayed in triangular form. These all apply the reactor constraint and use a flat

234 prior on dcp.
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Figure 18: Triangle plots for the Asimov A analysis, with the reactor constraint applied, for
the normal ordering, with a flat prior on d.p. The 1, 2, and 3o credible intervals are overlaid
on the posterior.
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Figure 19: Triangle plots for the Asimov A analysis, with the reactor constraint applied,
for the inverted ordering, with a flat prior on dcp. The 1, 2, and 30 credible intervals are
overlaid on the posterior.
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3.1.3 Bayes factors for atmospheric parameters

The posterior probabilities of the Asimov A analysis with applying the reactor constraint are
summarized in Tab. 2. The Bayes factor of upper octant over lower octant B(UO/LO) =
2.72, and the Bayes factor of normal ordering over inverted ordering B(NO/IO) = 7.26. The
Bayes factor for the combination of upper octant and normal ordering is B([UO+NO]/Other) =
1.73.

sin? 3 < 0.5 | sin?fy3 > 0.5 | Sum
NO (Am3, > 0) 0.25 0.63 0.88
10 (Am2, < 0) 0.02 0.10 0.12
Sum 0.27 0.73 1.00

Table 2: Posterior probabilities for the mass ordering and the octant in the Asimov A
analysis, with the reactor constraint applied.
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w1 3.2 Results without applying the reactor constraint

22 This section shows the Asimov A analysis without applying the reactor constraint on sin? ;5.
23 The same Asimov A chains are used with a burn-in period of 80,000 steps per independent

24 chain.

s 3.2.1 Parameter constraints
xs Each parameter constraint in this section is shown in normal ordering (Am2, > 0), inverted

27 ordering (Am2, < 0), and over both orderings.

23  One-dimensional posteriors Fig. 21, Fig. 22, Fig. 23 and Fig. 24 show the marginalised

x9  one-dimensional posterior for dcp, Am2,, sin? 613 and sin® 63, respectively.

250 For the dcp result, a small region around dcp ~ 7/2 is excluded at 3o confidence level.
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Figure 21: écp for the Asimov A analysis, without the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings.
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The Jarlskog invariant Fig. 25 and Fig. 26 show the marginalised one-dimensional Jarl-

skog invariant posteriors with flat prior on dcp and sindcp respectively. They are shown

without reactor constraint for normal, inverted and both mass orderings. The positive J

solution J ~ 0.04 is visible in the normal ordering and when

derings, with a weakly bimodal posterior, and the strongest
J =10.02,0.035].
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Figure 25: J for the Asimov A analysis, without the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings, with a flat prior on dcp.
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Two-dimensional posteriors Fig. 27, Fig. 28, Fig. 29, Fig. 30, Fig. 31, Fig. 32 and Fig. 33
show the two-dimensional marginal posteriors for dop — sin® i3, 6op — sin? o, dop — Am3,,
Am2, — sin? 013, Am2, — sin? O3, sin? 013 — sin” O3 and sin® fo3 — Am2,, respectively. These
are shown separately for normal ordering, inverted ordering and both orderings, all applying

the reactor constraint.
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Figure 27: §op — sin® 615 for the Asimov A analysis, without the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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Figure 28: dop — sin® fy3 for the Asimov A analysis, without the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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Figure 29: dcp — Am2, for the Asimov A analysis, without the reactor constraint applied,
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Figure 32: sin? #;5—sin? fy5 for the Asimov A analysis, without the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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Figure 33: sin? fp3 — Am2, for the Asimov A analysis, without the reactor constraint applied,
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posterior with a flat prior on sin d¢p.
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The Jarlskog invariant Fig. 34 and Fig. 35 show the two-dimensional .J — sin? fy3 poste-
riors for normal ordering, inverted ordering and both orderings, with a flat prior on dcp and
sin 0cp respectively. Fig. 36 shows the two-dimensional J — d.p posteriors without reactor
constraint for the orderings, with a flat prior on dcp. As with the one-dimensional case,
the J ~ 0.04 solution is evident for the result with a flat prior on d.p, and the posterior

is relatively flat in sin®#f,3 in this region. Interestingly, the J = 0.04 is not present for the

Figure 34: J —sin? fo3 for the Asimov A analysis, without the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings, with a flat prior on dcp.
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Figure 35: J — sin? fo3 for the Asimov A analysis, without the reactor constraint applied, for

normal (left), inverted (center), and both (right) orderings, with a flat prior on sin dcp.
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Figure 36: J — dcp for the Asimov A analysis, without the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings, with a flat prior on dcp.
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w0 3.2.2 Triangle plots

a0 Fig. 37, Fig. 38, and Fig. 39 show the one and two-dimensional oscillation parameters’
o posteriors, displayed in triangular form. These do not apply the reactor constraint, and use

o2 a flat prior on dcp.
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Figure 37: Triangle plots for the Asimov A analysis, without the reactor constraint applied,
for the normal ordering, with a flat prior on 6. The 1, 2, and 30 credible intervals are
overlaid on the posterior.
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Figure 38: Triangle plots for the Asimov A analysis, without the reactor constraint applied,
for the inverted ordering, with a flat prior on dcp. The 1, 2, and 30 credible intervals are
overlaid on the posterior.
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Figure 39: Triangle plots for the Asimov A analysis, without the reactor constraint applied,
for both orderings, with a flat prior on dcp. The 1, 2, and 3o credible intervals are overlaid
on the posterior.
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3.2.3 Bayes factors for atmospheric parameters

The posterior probabilities of the Asimov A analysis without applying the reactor constraint
are summarized in Tab. 3. The Bayes factor of upper octant over lower octant B(UO/LO) =
1.67, and the Bayes factor of normal ordering over inverted ordering B(NO/IO) = 3.98. The
Bayes factor for the combination of upper octant and normal ordering is very weak, with

B([UO+NO]/Other) = 0.98.

sin? 3 < 0.5 | sin?fy3 > 0.5 | Sum
NO 0.30 0.50 0.80
10 0.08 0.13 0.20
Sum 0.38 0.62 1.00

Table 3: Posterior probabilities for the mass ordering and the octant in the Asimov A
analysis, without the reactor constraint applied.
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3.3 Bayes factors for CP violation

Tab. 4 summarises the posterior probabilities of sin dcp > 0 and sin dop < 0 with and without
the reactor constraint. The Bayes factor B[(sindcp < 0)/(sindep > 0)] is 24.5(6.3) with(out)

the reactor constraint applied.

‘ sin dgp > 0 ‘ sindgp < 0 ‘ Sum
No RC 0.137 0.863 1.000
RC 0.039 0.961 1.000

Table 4: Posterior probabilities for sin d.p in the Asimov A analysis with and without reactor
constraint
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4 Results from fitting real data

In this section we move from Asimov studies to analysing the real data at all detectors’
selections; T2K ND280, T2K SK, and SK atmospheric. After inspecting traces and auto-
correlations, the same MCMC configuration is used for the data analysis as with the analysis
of Asimov A “data”. For the data analysis, part of the steps are collected from ORNL
Summit and part are from Alliance Canada. 277,661,111 steps were collected in total, with
good acceptance rates (~ 15 —19%) and a burn-in of 80,000 steps, with the number of steps
after burn-in being 230,940,527. Similar to the Asimov A analysis, the auto-correlation
goal was reaching 0.2 by lag 20,000. The trace of the total negative log likelihood for all
independent chains are shown in Fig. 40. Results shown in this section are produced using
steps collected after burn-in.

As with the Asimov A analysis, smearing from the fake-data studies TN457 [11] have
been added, and are applied by randomly smearing Am2, by 3.6 x 107° eV?.
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Figure 40: Collection of the traces of the negative log total likelihood from data fit chains.
The red line is the cut for post burn-in at 80,000 steps. Note that a few steps post burn-in
(step ~ 450 x 10%) have —LogL. = 0 near zero. They appeared after processing the raw
chain output files, and were not present in the original files. These steps are excluded in the
analysis.
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4.1 Results applying the reactor constraint

For these results, the reactor constraint on sin’#;5 is used with the same value as the T2K
OA2020 analysis TN393 [1] from the PDG [10]; sin? 6,3 = 0.0218 £ 0.0007.

4.1.1 Parameter constraints, prior flat in Jp

Each parameter constraint in this section is shown in normal ordering (Am2, > 0), inverted

ordering (AmZ, < 0), and over bother orderings.

One-dimensional posteriors Fig. 41, Fig. 42) Fig. 43 and Fig. 44 show the marginalised
one-dimensional posterior for dcp, Am2,, sin? f13 and sin? fy3, respectively.

The dcp result in Fig. 41 show dcp = 0 is excluded at greater than 20, and sindcp = 0
excluded at more than 20 for all choices of ordering (normal, inverted and both). As further
investigated in Tab. 5, after applying the interval shifts from the fake data study (Tab. 4
in TN457 [L1]), the 20 intervals for both normal and inverted ordering exclude dcp = 0.
These results are studied further with the Jarlskog invariant, including the impact of the

prior being flat in dcp or sin dcp.
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Figure 41: d.p for the real data analysis, with the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings.

The Am3, result in Fig. 42 shows a preference for the normal ordering with a Bayes
factor of 7.33 calculated in Sec. 4.1.4.

The posterior for sin? 3 in Fig. 44 shows a very weak preference for the upper octant
when marginalising over both mass orderings, with the lower octant included in the lo
credible interval. For the normal ordering, there is almost no octant preference at all. For

the inverted ordering the upper octant is more strongly preferred, although the 1o credible
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Figure 42: Am2, for the real data analysis, with the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings.
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s interval just excludes maximal mixing around sin®@,3 ~ 0.513. This is confirmed by the
a7 Bayes factor studies, which finds B(UO/LO) = 1.78 for both orderings, B(UO/LO)|xo =
318 1.63, and B(UO/L0)|IO = 3.33.
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Figure 44: sin? fy3 for the real data analysis, with the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings.
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Normal Ordering e 1SI%E T 2SI%E I BSI%E
Fit -2.50127 | -1.10056 | -3.06155 | -0.380193 | 2.58131 | 0.260132
Increment -0.034 0.122 -0.025 0.081 -0.024 0.059
Fit+Increment -2.53527 | -0.97856 | -3.08655 | -0.299193 | 2.55731 | 0.319132
Pass TRUE TRUE FALSE
Inverted Ordering TE 181% = — 251% = - 381% .
Fit -1.82092 | -0.780396 | -2.42123 | -0.300152 | -3.02153 | 0.140071
Increment -0.034 0.122 -0.025 0.081 -0.024 0.059
Fit+Increment -1.85492 | -0.658396 | -2.44623 | -0.219152 | -3.04553 | 0.199071
Pass TRUE TRUE FALSE
. 1sig 2sig 3sig

Both Ordering UE LE UE LE UE
Fit -2.42123 | -1.02052 | -3.02153 | -0.380193 | 2.62133 | 0.260132
Increment -0.034 0.122 -0.025 0.081 -0.024 0.059
Fit+Increment -2.45523 | -0.89852 | -3.04653 | -0.299193 | 2.59733 | 0.319132
Pass TRUE TRUE FALSE

Table 5: Summary table of d.p credible interval edges for flat prior of d.p from the data
fit (with reactor constraint) and the edges after applying the shifts from the fake data
study TN457 [11] for normal ordering (upper table), inverted ordering (middle table) and
both orderings (lower table) respectively. lo, 20 and 3¢ intervals are investigated. “Fit”
refers to the credible interval edges from MaCh3 data fit results with reactor constraint;
“Increment” refers to the extreme shift values from the fake data study results (Table 4 of
TN457 v1.3 [11]); “Fit+Increment” refers to the credible interval edges after applying the
shift values from fake data studies. The criteria of “Pass” is to check whether the credible
interval after applying the shift contains any one of the d.p values —m,0, 7. “LE” refers to
the lower edge of the interval and “UE” refers to the upper edge. Note that “LE” is not
necessarily smaller than “UE” because of wrapping through —7m = dcp = 7.
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: 1sig 2sig 3sig
Normal Ordering I UE T UB e UE
Fit -2.88146 | -0.700355 | 3.02153 | -0.180091 | 2.52128 | 0.380193
Increment -0.047 0.168 -0.02 0.086 -0.02 0.054
Fit+Increment -2.92846 | -0.532355 | 3.00153 | -0.094091 | 2.50128 | 0.434193
Pass TRUE FALSE FALSE
Inverted Ordering TE 181% = = 251% = — 381% .
Fit -2.08106 | -0.400203 | -2.66135 | -0.140071 | -3.14159 | 0.300152
Increment -0.047 0.168 -0.02 0.086 -0.02 0.054
Fit+Increment -2.12806 | -0.232203 | -2.68135 | -0.054071 | 3.12159 | 0.354152
Pass TRUE TRUE FALSE
. 1si 2si 3si

Both Ordering U LE U LE UE
Fit -2.82143 | -0.660335 | 3.04154 | -0.180091 | 2.54129 | 0.380193
Increment -0.047 0.168 -0.02 0.086 -0.02 0.054
Fit+Increment -2.86843 | -0.492335 | 3.02154 | -0.094091 | 2.52129 | 0.434193
Pass TRUE FALSE FALSE

Table 6: Summary table of dcp credible interval edges for flat prior of sin d.p from the data
fit (with reactor constraint) and the edges after applying the shifts from the fake data study
| for normal ordering (upper table), inverted ordering (middle table) and both
orderings (lower table) respectively. 1o, 20 and 3¢ intervals are investigated. “Fit” refers to
the credible interval edges from MaCh3 data fit results with reactor constraint; “Increment”

TN457 |

refers to the extreme shift values from the fake data study results (Table 4 of TN457 v1.3 |

“Fit+Increment” refers to the credible interval edges after applying the shift values from fake
data studies. The criteria of “Pass” is to check whether the credible interval after applying
the shift contains any one of the dcp values —m,0, 7. “LE” refers to the lower edge of the
interval and “UE” refers to the upper edge. Note that “LE” is not necessarily smaller than
“UE” because of wrapping through —m = d.p = 7. For simplification, the interval edges for
a specific sigma are the most extreme values among all connected intervals.
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4.1.2 Parameter constraints, prior flat in sindp

The results until now have applied a flat prior on dcp, as is commonplace in T2K and SK
analyses. However, the variable which the flat prior is being applied has the ability to shape
the posterior, especially if the constraint from the data on the posterior is weak. For example,
a prior flat in dcp is not the same as a prior flat in sin dcp, since the former down-weights
probabilities around +m/2. The P(v, — v.) — P(v, — 7.) has dependence on sin dgp, not
0cp. Hence, studying the impact of the shape of the prior on d.p is important, especially
when intending to make definitive statements on particular credible intervals. All results in
this section applies the reactor constraint on sin? ;3.

Fig. 45 shows the one-dimensional posteriors for each mass ordering for ., with a prior
flat in sin 0cp. Compared to the prior flat in d.p, this prior choice enforces a strong zero prior
at the maximal CP violation points, cos dcp = 0, i.e. when dcp = £7/2. Hence, the credible
intervals are discontinuous around dcp = 7/2, which is near the maximal posterior density

when a prior flat in dcp was used.

With reactor constraint, Normal ordering With reactor constraint, Inverted ordering With reactor constraint, both orderings
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3 12 L 3 L 3 [ L
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Figure 45: d.p for the real data analysis, with the reactor constraint applied and a flat prior
on sin dcp, for normal (left), inverted (center), and both (right) orderings.

Fig. 46 and Fig. 47 show the Am2, and sin® f;3 posteriors, respectively, which show little
dependence on this choice of priors, owing largely to the lack of correlation with d¢p.

Fig. 48 shows the results for sin®fy3, where we see a slightly more peaked distribution
for the normal ordering, but otherwise looks the same.

The one-dimensional posteriors are compared in detail for the two choices of priors in
Sec. 4.3.
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Figure 46: Am3, for the real data analysis, with the reactor constraint applied and a flat
prior on sin d¢p, for normal (left), inverted (center), and both (right) orderings.
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Figure 47: sin? 6,5 for the real data analysis, with the reactor constraint applied and a flat
prior on sin d¢p, for normal (left), inverted (center), and both (right) orderings.
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Figure 48: sin®fy3 for the real data analysis, with the reactor constraint applied and a flat
prior on sin d¢p, for normal (left), inverted (center), and both (right) orderings.
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The Jarlskog invariant Fig. 49 and Fig. 50 show the marginalised Jarlskog invariant (/)

posterior for normal ordering, inverted ordering and both ordering, shown separately with a

flat prior on dcp and flat prior on sin dcp.

For the J with flat prior on d¢p, J = 0 is comfortably excluded at more than 20 credible

level for all choices of mass ordering. With a prior flat in sin dp, the constraint on J lessens,

and J = 0 is just excluded at 20 credible interval, driven by the normal ordering.
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Figure 49: J for the real data analysis, with the reactor constraint applied, for normal (left),
inverted (center), and both (right) orderings, with a flat prior on d¢p.
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Figure 50: J for the real data analysis, with the reactor constraint applied, for normal (left),
inverted (center), and both (right) orderings, with a flat prior on sin d¢p.
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Two-dimensional posteriors Fig. 51, Fig. 52, Fig. 53, Fig. 54, Fig. 55, Fig. 56 and Fig. 57
show the two-dimensional marginal posteriors for dop — sin® i3, 6op — sin? o, dop — Am3,,
Am2, — sin? 013, Am2, — sin? O3, sin? 013 — sin” O3 and sin® fo3 — Am2,, respectively. These
are shown separately for normal ordering, inverted ordering and both orderings, all applying
the reactor constraint.

As with the Asimov A studies, the number of MCMC steps and the chosen binning is not
sufficient to make reliable 30 statements, and the 3¢ credible interval should only be used
to guide the reader for the approximate exclusion, and no accurate statistical statements
should be made about 30 exclusion.

In general, the results are roughly compatible with the expected sensitivity from the
Asimov A analysis.

Compared to the main T2K-only results (see Fig 80 in TN393 [1]), the correlation between
sin? f93 and sin? 65 in Fig. 56, and sin? 653 and d¢p in Fig. 52, are relaxed in the joint analysis,
and they are almost independent. Similar can be said about sin®fo3 and Am2,, likely due

to the maximum likelihood being around maximal mixing.

With Reactor Constraint, Normal Hierarchy With Reactor Constraint, Inverted Hierarchy With Reactor Constraint, Both Hierarchies

a0? e 10 a0?

JaY
NS
a b

26 26

X
A e e e e 0.

2
sin” 6,4

&)
o o
o o
5 >
N
[
<
=] o
=3 [N
G

in2
sin® 0,

25 25

24 0145 24

23 0.12¢< 23

Posterior probability

22
21

20 20

Credible intervals, flat prior on Ecp
£ Brrob. —i5 20 30
S P B P A 0 18
-3 -2 -1 0 1 2 5 3 -3 -2 -1 0 1 2 3

CcP

Credible intervals, flat prior on BCP

E IProb. —Io 20 30
N B A I

19 0.02 19

18

Figure 51: 6cp — sin?6;5 for the real data analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings.
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Figure 52: 6cp — sin? 6y for the real data analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings.
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Figure 53: dcp — AmZ, for the real data analysis, with the
normal (left), inverted (center), and both (right) orderings.
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Figure 54: Am2, —sin® 03 for the real data analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings.
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Figure 55: Am2, — sin® fp3 for the real data analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings.

With Reactor Constraint, Normal Hierarchy With Reactor Constraint, Inverted Hierarchy With Reactor Constraint, Both Hierarchies
-3 -3 -3
065 "’ 0065 a5 p0es 10
<) [ 01E © [ 025 o© [ 0.14=
o F 3 o [ . 3 « b 143
£ r c S = c £ r [}
» 06 0122 ©» 06 o ‘n 06 o
[ e L IS [ 0129
r o r 0152 r o
0.55 - 01 o 0.55 - o 0.55 - 01 S
L 2 L 2 L 2
L 0.089Q L 172} L 17}
o o 0.080
0.5 g 0.5~ 010 05 e
5 0.06 F 5 0.06
0.45 - 0.45 [ 0.45 -
5 0.04 F 5
: \\\MA/ E 5 0.05 : 0.04
04 credible intervals, flat prior on Ocp 0.02 04 credible intervals, flat prior on Scp 04 credible intervals, flat prior on Ocp 0.02
r IProb. —1o 20 30 C IProb. =iy =2y 30 r IProb. —1o 20 30
0.35 o b b e by 0 0.35 P S A S S RS 0 0.35 P IS RS S S NI
0.018 0.02 0.022 0.024 0.026 0.018 0.02 0.022 0.024 0.026 0.018 0.02 0.022 0.024 0.026
sin® 6, sin® 0, sin® 0,

Figure 56: sin? 6,5 — sin” A3 for the real data analysis, with the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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Figure 57: sin? fo3 — Am32, for the real data analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings.
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The Jarlskog invariant Fig. 58 and Fig. 59 show the two-dimensional .J — sin? fl53 poste-
riors for normal ordering, inverted ordering and both orderings, with a flat prior on dcp and
sin dcp respectively. Fig. 60 shows the two-dimensional J — d.p posteriors for the orderings,
with a flat prior on dcp.

As in the Asimov A studies and the one-dimensional posterior from the data analysis,
the posterior for the analysis using a prior flat in sindcp has a larger 1o credible interval.
The 20 and 3¢ intervals are much more similar than the 1o interval for the two choices of
flat prior.

We see the strongest constraint on J in the inverted hierarchy and the lower octant, as
expected from the analysis of the one-dimensional posteriors from the data. This agrees
with the expectation of the impact of the prior; a prior flat in dcp emphasises the extreme
solutions at |J| ~ 0.03.
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Figure 58: J — sin®#,3 for the real data analysis, with the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings, with a flat prior on d¢p.
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Figure 59: J — sin?f,3 for the real data analysis, with the reactor constraint applied, for

normal (left), inverted (center), and both (right) orderings, with a flat prior on sin dcp.

Jarlskog invariant, normal hiearchy

Credible intervals
flat prior on &,

IProb. -lo 20 30

P [
-0.04

P T
-0.02 02 0.02 0.04
J = 5,,015815C1555C238IN0

x107
3 E vog 8
Qo
8
25 2 2
[=%
5]
25 1
2
15 & 0
1 -1
05 -2
o -3

Jarlskog invariant, inverted hierarchy

~

Credible intervals
flat prior on &,

IProb. -1o 20 30

-0.02 02 0.02 0.04
J = 8,,01551,C15525C5581NS

-0.04

[,

Jarlskog invariant, both hierarchies

Credible intervals
flat prior on &,

IProbA -lo 20 30

rd

T IR B T IR R
-0.04 -0.02 02 0.02 0.04
J = 8,,01551,C15555C238INd

%10

N
Posterior probability

=
v

[

Figure 60: J — dcp for the real data analysis, with the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings, with a flat prior on dcp.
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sz 4.1.3 Triangle plots

sis Fig. 61, Fig. 62, and Fig. 63 show the one and two-dimensional oscillation parameters’
s posteriors, displayed in triangular form. These all apply the reactor constraint and use a flat

35 prior on dcp.
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Figure 61: Triangle plots for the real data analysis, with the reactor constraint applied, for
the normal ordering, with a flat prior on d.p. The 1, 2, and 3o credible intervals are overlaid
on the posterior.
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Figure 62: Triangle plots for the real data analysis, with the reactor constraint applied, for
the inverted ordering, with a flat prior on dcp. The 1, 2, and 3o credible intervals are overlaid
on the posterior.
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Figure 63: Triangle plots for the real data analysis, with the reactor constraint applied, for
both orderings, with a flat prior on dcp. The 1, 2, and 30 credible intervals are overlaid on
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4.1.4 Bayes factors for atmospheric parameters

Posterior probabilities from the data fit with reactor constraint for different hypothesis ap-
plying the reactor constraint are calculated and summarized in Tab. 2. The Bayes factor
of upper octant over lower octant is B(UO/LO) = 1.78 and the Bayes factor of normal
ordering over inverted ordering is B(NO/IO) = 7.33. The combined Bayes factor for UO
and 10 is weak, with B([UO+NO]/Other) = 1.17. These posterior probabilities are compat-
ible with P-Theta’s MCMC results in the data fit TN459 [12], and the mass ordering Bayes
factor is notably stronger and the octant preference is weaker than the T2K-only analysis in

TN393 [1]. Therein, T2K finds B(NO/IO) = 4.2 and B(UO/LO) = 3.36.

sin? fa3 < 0.5 | sin?Os3 > 0.5 | Sum
NO 0.33 0.54 0.88
10 0.03 0.10 0.12
Sum 0.36 0.64 1.00

Table 7: Posterior probabilities for the mass ordering and the octant in the real data analysis,
with the reactor constraint applied.
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4.2 Results without applying the reactor constraint

This section is dedicated to the data fit results without applying the reactor constraint on
sin?#;5. The same data fit chains are used with a burn-in of 80,000 steps per independent

chain.

4.2.1 Parameter constraints

Each parameter constraint in this section is shown in normal ordering (Am3, > 0), inverted

ordering (AmZ, < 0), and over bother orderings.

One-dimensional posteriors Fig. 64, Fig. 65, Fig. 66, and Fig. 67 show the marginalised
one-dimensional posterior for dcp, Am3,, sin? @5 and sin? f3, respectively.

As for the results with reactor constraint applied, the constraint on dcp is weaker in the
normal ordering in Fig. 64. dcp = 0 is just excluded at 20 credible interval, and dop = —7
is included. The result in normal ordering is compatible with inverted ordering, although
the inverted ordering highest posterior density is near d.p ~ —1 whereas in normal ordering

5CP ~ _2.

Without reactor constraint, Normal ordering Without reactor constraint, Inverted ordering Without reactor constraint, both orderings
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= L 3 = 121 — = 8r =
% sF Credible intervals — % Credible intervals -% E Credible intervals
o £ flat prior on &, | o L flat prior on &, o 7B flat prior on 8., E
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Figure 64: d.p for the real data analysis, without the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings.

As for the mass ordering, Fig. 65 shows a similar but weaker preference for normal
ordering.

The constraint on sin?#;5 in Fig. 66 is compatible with the reactor constraint, and is the
impact of the reactor constraint is shown in more detail in Sec. 4.4.

The constraint on sin? f,3 without the reactor constraint consistently weakly prefers the

lower octant for both orderings individually and combined. The constraint is weak, and the
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w5 upper octant is also inside the 1o credible interval, although the highest posterior density is

ws in the lower octant. This is tabulated in the section dedicated to Bayes factors, Sec. 4.2.3.
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Figure 67: sin®f,3 for the real data analysis, without the reactor constraint applied, for

normal (left), inverted (center), and both (right) orderings.
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407

w8 posterior for normal ordering, inverted ordering and both orderings with flat prior on dcp
w0 and sin dqp, respectively.

a10 J =0 is excluded between 1-20 for both priors.

The Jarlskog invariant Fig. 68 and Fig. 69 show the marginalised Jarlskog invariant (.J)

Posterior probability

Figure 68: J for the real data analysis, without the reactor constraint applied, for normal
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Figure 69: J for the real data analysis, without the reactor constraint applied, for normal
(left), inverted (center), and both (right) orderings, with a flat prior on sin dcp.
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Two-dimensional posteriors Fig. 70, Fig. 71, Fig. 72, Fig. 73, Fig. 74, Fig. 75 and Fig. 76
show the two-dimensional marginal posteriors for dop — sin® i3, 6op — sin? o, dop — Am3,,
Am2, — sin? 013, Am2, — sin? O3, sin? 013 — sin” O3 and sin® fo3 — Am2,, respectively. These
are shown separately for normal ordering, inverted ordering and both orderings, all without
applying the reactor constraint.

Firstly, in Fig. 70 we notice a different 6., and sin? 6,5 correlation for normal and inverted
orderings, and a different maximum of the posterior density. The normal ordering result
favours a more negative d.p alongside a smaller sin? 6,3 with a negative correlation, and the

inverted ordering favours a less negative value of d.p alongside a larger sin? 6,5 with a positive

correlation.
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Figure 70: dop — sin? 6,5 for the real data analysis, without the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.

For the d¢p — sin? a3 result in Fig. 71, the constraint on dp is weakest in the lower octant
(which has the highest posterior density), especially in the normal ordering. For inverted
ordering, the two are barely correlated.

For the sin? 6,5 — sin® fy3 posterior in Fig. 75, there is now an evident anti-correlation,
whereas the analysis applying the reactor constraint showed barely any correlation. This
stems from the external constraint on sin®#6;3 decorrelating the two. The correlation is

roughly the same in both hierarchies.
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Figure 73: Am2, —sin® 6,3 for the real data analysis, without the reactor constraint applied,
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Figure 74: Am2, — sin? fy3 for the real data analysis, without the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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Figure 75: sin? 615 —sin? fo3 for the real data analysis, without the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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Figure 76: sin® fo3 — Am2, for the real data analysis, without the reactor constraint applied,
for normal (left), inverted (center), and both (right) orderings.
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The Jarlskog invariant Fig. 77 and Fig. 78 show the two-dimensional .J — sin? f53 poste-
riors for normal ordering, inverted ordering and both orderings, with a flat prior on dcp and
sin dcp respectively. Fig. 79 shows the two-dimensional J — d.p posteriors for the orderings,
with a flat prior on dcp.

As for the two-dimensional dcp — sin? fly3 posteriors, J is more strongly constrained in
the upper octant when the reactor constraint isn’t applied. For instance, J = 0 is just
barely excluded at 1o in the lower octant for the analysis using a prior flat in sin d¢p when
marginalising over both orderings and the normal ordering only.

As seen in both the Asimov A analysis and the data analysis, the prior flat in dcp or
sin 0cp mainly impact the 1o credible interval, and the 2 and 3¢ intervals are very similar
regardless of prior choice. The positive J solution weakly appears in the analysis with a flat

prior on dqp, but there is less probability there than in the Asimov A study.
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Figure 77: J — sin? 0,3 for the real data analysis, without the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings, with a flat prior on d¢p.
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Figure 78: J — sin® 6,3 for the real data analysis, without the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings, with a flat prior on sin dcp.
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Figure 79: J — dcp for the real data analysis, without the reactor constraint applied, for
normal (left), inverted (center), and both (right) orderings, with a flat prior on d¢p.
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4.2.2 Triangle plots

Fig. 80, Fig. 81, and Fig. 82 show the one and two-dimensional oscillation parameters’
posteriors, displayed in triangular form, summarising the main results. These do not apply

the reactor constraint, and use a flat prior on d¢p.
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Figure 80: Triangle plots for the real data analysis, without the reactor constraint applied,
for the normal ordering, with a flat prior on 6. The 1, 2, and 30 credible intervals are
overlaid on the posterior.
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Figure 81: Triangle plots for the real data analysis, without the reactor constraint applied,
for the inverted ordering, with a flat prior on dcp. The 1, 2, and 30 credible intervals are
overlaid on the posterior.
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Figure 82: Triangle plots for the real data analysis, without the reactor constraint applied,
for both mass orderings, with a flat prior on dcp. The 1, 2, and 30 credible intervals are

overlaid on the posterior.
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4.2.3 Bayes factors for atmospheric parameters

Posterior probabilities for the data fit without reactor constraint are calculated and sum-
marized in Tab. 8. The Bayes factor for upper octant over lower octant B(UO/LO) is 0.82,
notably weaker than the with reactor constraint case. This is expected due to the corre-
lations between sin®fy3 and sin?#;5. The Bayes factor for normal ordering over inverted
ordering B(NO/IO) is 3.76, which is comparable to T2K’s main result using reactor con-
straint (B(NO/IO) = 4.2). The Bayes factor for upper octant and normal ordering over its

competing hypotheses B([UO+NO]/Other) is 0.52.

sin? 923 < 0.5 | sin? O3 > 0.5 Sum
NO 0.44 0.34 0.79
10 0.11 0.11 0.21
Sum 0.55 0.45 1.00

Table 8: Posterior probabilities for the mass ordering and the octant in the real data analysis,

without the reactor constraint applied.
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4.3 Impact of a flat prior on d.p or sindcp

This section overlays the one-dimensional posterior probabilities using a prior flat in dqp
(identical to results in Sec. 4) with when applying a prior flat in sin §cp. This section applies
the reactor constraint for all results. Fig. 83 shows the posterior probabilities and 1, 2,
30 credible intervals for the two choices of prior. The 20 interval just contains +m with a
prior flat in sin d.p, whereas it excludes it with a prior flat in dcp. Thus, a statement on 20

exclusion of d., = 0, 7 is prior dependent, and should be avoided.

With reactor constraint, Normal ordering

With reactor constraint, Inverted ordering

With reactor constraint, Both orderings
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Figure 83: dcp from real data fit with a prior flat in dcp (blue shaded) and flat in sin dcp

(yellow shaded) applied.

Fig. 84 shows the same result but for AmZ,, which has close to no impact on both
the credible intervals and the mass ordering preference. This is expected from the weak

correlation between Am2, and d¢p in Sec. 4.

With reactor constraint, Normal ordering

With reactor constraint, Inverted ordering

With reactor constraint, Both orderings
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Figure 84: Am3, from real data fit with a prior flat in dcp (blue shaded) and flat in sin dcp

(yellow shaded) applied.

Similarly, the posteriors for sin ;5 in Fig. 85 are identical.
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Figure 85: sin? 65 from real data fit with a prior flat in dop (blue shaded) and flat in sin dcp
(yellow shaded) applied.

463

Finally, the sin? fy5 is shown in Fig. 86, where there is a marginally stronger preference

ss  for the upper octant when a flat prior on sin dcp is used in the normal ordering. For inverted

ordering the posterior is largely the same.

Posterior probability
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Figure 86: sin® 6,3 from real data fit with a prior flat in dqp (blue shaded) and flat in sin dcp
(yellow shaded) applied.
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4.4 Impact of reactor constraint

Fig. 87, Fig. 88, Fig. 89 and Fig. 90 are the comparison of one dimensional contours for
results with reactor constraint (blue shaded) and without reactor constraint (yellow shaded)
of 8¢p, sin? b5, sin’ fas and Amj3, respectively.

In Fig. 87, similar contour shape differences are observed in OA2020 with /without reactor
constraint comparison (see Figure 88 in TN393 [l]). For normal ordering and inverted
ordering, contours with reactor constraint have better constraint on d.p and pull the best-fit
points slightly away from contours without reactor constraint, but in different directions.
Results without reactor constraint can barely exclude é.p = 0 at 20 for normal ordering, but
cannot exclude it for inverted ordering. Results with reactor constraint can easily exclude it
at 20 for both orderings.

Fig. 88 shows the direct effect of reactor constraint on sin® #;3. The posterior probability
is narrowed and is approximately a Gaussian with the central value close to 0.0218.

In Fig. 89, contrarily to the comparison in OA2020 (Fig. 88 in TN393 [1]), the results
without reactor constraint show a preference of the lower octant while the results with reactor
constraint show a much weaker preference of one octant over another, highlighting the impact
of the SK atmospheric selections.

Fig. 90 shows that the constraint on Am3, is largely independent of the reactor constraint

on sin? 6y3.

Without reactor constraint, Normal ordering Without reactor constraint, Inverted ordering Without reactor constraint, Both orderings
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Figure 87: dcp from real data fit with (blue shaded) and without (yellow shaded) reactor
constraint applied.

Bayes factors Tab. 9 summarises the posterior probabilities of sin dcp > 0 and sin dep < 0

without and with reactor constraint respectively. The Bayes factor of sindep < 0 over
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w7 sindep > 0 is calculated to be 10.5 without reactor constraint and 50.0 with reactor con-

straint.

‘ sindep > 0 ‘ sindep < 0 ‘ Sum
No RC 0.086 0.914 1.000

RC 0.019 0.981 1.000

Table 9: Posterior probabilities for data analysis with and without reactor constraint
288
489 Tab. 10 summarises the Bayes factors of upper octant over lower octant and normal
w0 ordering over inverted ordering for results with reactor constraint and without reactor con-
a1 straint. Compared to results without reactor constraint, with reactor constraint has a slightly
w2 stronger preference of the upper octant. And for mass ordering, results with reactor con-

w03 straint has a stronger preference of normal ordering.

| B(UO/LO) | B(NO/IO) |
No RC 0.82 3.76
RC 1.78 7.33

Table 10: Summary table of the Bayes factors of upper octant over lower octant and normal
ordering over inverted ordering for data fit results with reactor constraint and without reactor
constraint.
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4.5 Posterior Predictive Spectra and p-values
4.5.1 Posterior predictive spectra

Posterior predictive spectra are constructed by randomly selecting 3000 throws from the post
burn-in steps in the data fit. The mean of each reconstructed kinematic bin is calculated
with the RMS of the 3000 throws distribution representing the uncertainty. The data (black
markers) are also shown in the same plot. The posterior predictive spectra are shown with
(blue markers) and without (red markers) reactor constraint. The posterior predictive spec-
tra with reactor constraint are obtained by applying the reactor constraint weights to each
throw.

To focus on the region where the oscillations occur, the spectra of T2K mu-like beam
samples (Fig. 91) binned in reconstructed energy are only shown below 2 GeV, even though
higher E,.. bins are included in the overall analysis. The e-like T2K samples are bined in
both reconstructed neutrino energy and lepton angle, and the projections on the lepton angle
are shown in Fig. 92.

Fig. 93, Fig. 95 and Fig. 97 are spectra binned in reconstructed lepton momentum
for atmospheric SubGeV, MultiGeV and PC&UpMu samples respectively. Though UpMu-
nonshower and UpMu-shower samples only have one bin in reconstructed lepton momentum,
the overlay plots are shown. Fig. 94, Fig. 96 and Fig. 98 are the spectra binned in recon-
structed cosine zenith angle for atmospheric SubGeV, MultiGeV and PC&UpMu samples
respectively. Though SubGeV1Reldcy, SubGeV1Rmu2dcy and SubGeV2Rpi0 samples only

have one bin in reconstructed lepton angle, the overlay plots are shown.

4.5.2 Impact of uncertainty sources

Tab. 11 summarises different groups of systematics uncertainty contributions to the total
uncertainty for each SK sample without the reactor constraint applied. The uncertainty is
calculated as the change in the total number of events in the sample using to the post-fit
constraints on the systematics. The uncertainty on each group is calculated by randomly
drawing 3000 throws of systematics and using them to produce sample spectra from post
burn-in MCMC chains while keeping the other groups fixed at nominal (AsimovA). When
extracting a specific group of systematics contribution, other groups are fixed at their nom-
inal values. Hence, the correlation between groups are not considered and thus, the total
uncertainty is not naively a sum of different groups in quadrature. The total systematic

uncertainties (labelled as “Total Syst.”) are extracted by varying all systematics including
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near-detector systematics and fixing all oscillation parameters to their Asimov A values. The
total uncertainties (labelled as “Total”) are extracted by varying all systematics including
near-detector systematics and oscillation parameters.

We see that for the T2K samples the cross-section uncertainties and detector uncertainties
play the largest role, and are the largest for the FHC 1Relde and RHC 1Re samples (7%,
4%, respectively). The uncertainties are largely the same as in T2K’s analysis, with the
exception of the total uncertainty on the FHC 1Relde, which is 9.2% compared to ~ 14%
on T2K, likely due to correlations in the systematics with the atmospheric selections. For
the SK atmospheric samples, the atmospheric flux uncertaintes are ~ 3% for the SubGeV
samples, which is similar to the impact of the other classes of systematics. As for T2K, the
e-like SK samples often have large cross-section systematics than the mu-like equivalents.
For the higher energy samples, the uncertainty increases to ~ 4 — 6% and the detector
systematics are the smallest source of uncertainty. Interestingly, the overall uncertainty on
the SK atmospheric samples is smaller than for the T2K samples.

The uncertainty from all sources (“Total”) may be less than “Total syst” due to correla-
tions between oscillation parameters and systematic parameters, which are not accounted for
when only calculating the “Total syst”. These correlations can lessen the overall uncertainty

on the number of events at SK.

4.5.3 Posterior predictive p-values

Two p-values are calculated to quantify the agreement between the model and the data. One
is calculated using a y? based on total event rate for each sample (single bin analysis) and
the other is calculated based on the shape (i.e. bin-by-bin) for each sample. We repeat these
studies with and without applying the reactor constraint on sin#;s.

The p-value calculation is based on making random draws of all the parameters (system-
atics and oscillation parameters) from the chain after burn in, and building the prediction of
the samples for this specific draw. The x? between the draw and the data is calculated, and
compared to the x? between the draw and a statistical fluctuation of the draw. The p-value is
extracted as the percentage of draws for which the y?(data, draw) < x?(fluct. draw, draw).
The p-value calculation compares the expected x? for a given draw (x*(fluct. draw, draw))
against the actual realised y? for the data and the given draw (x?*(data, draw)). If the
model is insufficiently parametrised, the y?(data, draw) is expected to be much larger
than x?(fluct. draw, draw). If the model is sufficient, you'd expect y?*(data, draw) to

be similarly sized to y?(fluct. draw, draw). Finally, in the case where we have an over-
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parametrised model with too much freedom, we expect x?(data, draw) to be much smaller
than x?(fluct. draw, draw). Hence, a p-value close to 1 is not necessarily a good thing with
posterior predictive p-values, and should also be investigated.

The p-values are investigated in details in Tab. 12. First, we look at the p-value from
both the total event rate and the shape of the spectrum. For the shape of the spectrum, we
project the T2K samples onto the reconstructed neutrino energy FE,.. and the SK samples
on the reconstructed lepton momentum, pie,, except for the UpThru samples, which are
only binned in cosf,. Secondly, we also restrict the shape p-value to the region relevant to
neutrino oscillations, that is Ei.. < 2 GeV for the T2K samples and pie, < 10 GeV /c for the
SK samples. Thirdly, we also investigate the impact of the reactor constraint on sin? 3.

The overall rate-only p-value is 0.387 without reactor constraint, and 0.420 with the
reactor constraint. For the rate-only p-value, we note the T2K FHC 1Rmu (0.195) and SK
MultiGeV-elike-nue (0.220) fall below p = 0.25. As previously noted, these are relatively
strong p-values, and we conclude the rate for all samples to be well described. The reactor
constraint has the largest impact on the T2K RHC 1Re sample (0.475 — 0.673), T2K FHC
1Relde (0.444 — 0.351). As expected, the reactor constraint has a much smaller effect on
SK samples.

The overall shape p-value falls to 0.106 (0.111) when (not) applying the reactor constraint.
The shape p-value does a better job at exposing weaknesses in modelling the samples. The
T2K FHC 1Rmu (0.240), T2K FHC 1Re (0.209), SK SubGeV-mulike-1dcy (0.162), SK
SubGeV-pillike (0.162), SK MultiGeV-elike-nuebar (0.207), SK MultiRingOther-1 (0.063),
and SK UpThruNonShower-mu (0.03) samples fall below p = 0.25, with the latter two
samples being particularly bad.

Breaking up the total shape p-value into the T2K and SK part, the former has p = 0.471
and latter has p = 0.039. Splitting the SK p-values into SubGeV and MultiGeV+MultiRing,
the former has p = 0.251 and the latter has p = 0.037 when imposing the 10 GeV/c cut, and
p = 0.001 when looking at the entire pi, phase space. Hence, the poor shape p-value comes
primarily from the MultiGeV and MultiRing samples. For the two set of samples that share
systematics, the T2K and SK SubGeV, the p-values are good for both the event-rate (0.536)
and shape (0.365), indicating that the correlated uncertainty model is robust in describing
both set of samples.

Fig. 99 complements Tab. 12 by showing the distributions which determine the rate and
shape-based p-values. We see that the underlying distribution is more circular for the rate-

based p-value (implying there is roughly the equal spread in uncertainty from systematics as
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there are from statistics if the data is similar to the model), whereas the shape-based p-value
is more oblong.

To illustrate the by-sample p-values, the same underlying distributions are shown by
sample in Fig. 100 for SK atmospheric and Fig. 101 for T2K beam samples. We note that
for T2K samples the distributions are more horizontal, which comes from the low statistics
making the y? from a statistical variation large. The relative contributions to the x? from
the samples can also be seen, where the x? from the SK Sub-GeV samples is often below 10,
whereas for T2K they are often above 20.

To further investigate the poor shape-based posterior predictive p-values of the multi-
GeV and multi-ring samples at SK, we instead project the selections on the reconstructed
zenith angle, cosf,, in Tab. 13. For these calculations, we keep the T2K samples projected
onto the reconstructed neutrino energy F.. and the SK SubGeV samples projected onto
the reconstructed lepton momentum pie,. The overall total p-value markedly improves from
p = 0.111 to p = 0.322, although by-sample the change is more nuanced. The SK MultiGeV-
elike-nue selection goes from relatively well described to acceptable (p = 0.313 — 0.098) and
the SK PCStop selection goes from 0.682 to 0.360. However, the MultiRingOther-1, which
was poorly described in prep, is now well described in cos @, with p = 0.755. Finally, the
p-value from MultiGeV and MultiRing selections, which was p = 0.037 in pjep, improves to
p=0.398 in cos¥,.

[CW: (JJ)Syst constraint plots need slightly adjustment, will do ]

This section has been considerably altered from that circulated in draft: v2.0

4.6 Systematic constriants

This section shows the prior and posterior constraints on nuisance parameters in the
joint-fit. Reactor constraint is applied to the posterior results. Fig. 102, Fig. 103, Fig. 104
and Fig. 105 show the overlay (upper panel) and the error band ratio (lower panel) of the
prior (red bands) and the posterior (black markers) for flux group, BANFF and other cross-
section group and correlated far detector group respectively. Note that the classification of
systematics is based on the convenience of their implementation in MaCh3 and has some
differences compared to the groups in MaCh3 vs PTheta posterior constraints comparison.
However, it is important to note that despite the order and the grouping when presenting
results, two fitters use the same set of systematics. The posterior constraints are extracted

from the posterior probability distributions which are produced from 1 million randomly
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s drawn steps from the total burn-in steps. Due to limited time, we are not able to utilise all

s26 post burn-in steps but will do so in the near future.

81



FHC1Rmu-2020 RHC1Rmu-2020

—— Data §  Without RC —— WithRC —— Data [ Without RC —— WithRC

Events
Events

©

25

-

20

>
°
o

Effective number of throws

Effective number of throws

@

N

!LHI\\H‘\\H‘HH‘HH‘HH‘HH‘HH

| p—
———

0.1
10 ‘— 3
r T 0.05
) T
L R 1
g T SR
\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\‘\\H\\‘\‘ ’ww\wH\Hw\wH\Hw\mw\wm\mw\wm\ 0
82 0.4 06 08 12 14 16 0.2 0.4 06 08 14 2
Reconstructed Neutrino Energy (Ge\/) Reconslruc{ed Neulnno Energy (GeV)
FHC1Re-2020 RHC1Re-2020
—— Data Without RC —— WithRC —— Data Without RC —— WithRC
) 0 2 025 o
5 8 5 H
o £ G 35 £
5 5
12 5 5
5 5
_ 02 E 3 = 02 E
5 5
2 2
10 2 2
B ]
£ 25 8
i i

o
-
@

=
|
\
|
-~

L\‘\\\T\\\T\\\‘\\\‘\\\
|
} |
o=
|
+ ‘
!
\\‘\\\\‘\\\\‘\\\\T\\\\‘\\\\‘\\\\‘\\\
|
|
l

IS
.

“i

o
@

|

5
:.T

‘\ \ 1 ‘\ 1 | 1 1 | l
T — e e S 0

Reconstruc(ed Neumnu Energy (Gev) Reconstructed Neutrino Energy (Gev)

o

I3
N

FHCCC1pi-2020

—

—— Data [ WithoutRC —— WithRC |
8 025 ¢
5,40 H
a > £
L 5
3
L 2
. 02 E
5
2 - B
I 2
F g
L &
w
I 0.15
15—
B 0.1
W q _
4 0.8

ol b b b Ll L b e T 0
05 0.6 0.7 0.9 1 11 1

o

Reconstructed Neutrino Energy (GeV)

Figure 91: Posterior predictive spectra from the data fit for the T2K beam samples, binned
in reconstructed energy. Spectra with (blue) and without (red) reactor constraint are shown.
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Figure 92: Posterior predictive spectra from the data fit for the T2K e-like beam samples,
binned in reconstructed theta angle. Spectra with (blue) and without (red) reactor constraint
are shown.
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Figure 93: Posterior predictive spectra from the data fit for the SK SubGeV atmospheric
samples binned in reconstructed lepton momentum. Spectra with (blue) and without (red)
reactor constraint are shown.
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Figure 94: Posterior predictive spectra from the data fit for the SK SubGeV atmospheric
samples binned in reconstructed cosine zenith angle. Spectra with (blue) and without (red)
reactor constraint are shown.
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Figure 95: Posterior predictive spectra from the data fit for the SK MultiGeV atmospheric
samples binned in reconstructed lepton momentum. Spectra with (blue) and without (red)
reactor constraint are shown.

85



MultiGeV-elike-nue MultiGeV-elike-nuebar MultiGeV-mulike
— oam Wiiou e —— W

|

‘LI-
i
W

MultiRing-elike-nue
Without RC —+— With R

umber of throws.

Effective number of throws
Effective n

MultiRing-mulike MultiRingOther-1
Ty Wit i ——

number of throws.

T
Effective number of throws
Effective

ol
o
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Figure 97: Posterior predictive spectra from the data fit for the SK PC (partically-contained)
and UpMu atmospheric samples binned in reconstructed lepton momentum. Spectra with
(blue) and without (red) reactor constraint are shown.
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Figure 98: Posterior predictive spectra from the data fit for the SK PC (partically-contained)
and UpMu atmospheric samples binned in reconstructed cosine zenith angle. Spectra with
(blue) and without (red) reactor constraint are shown.
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Sample SK atm. flux | T2K beam flux | SK det. | Cross sections | Total Syst. | Total
T2K FHC 1Rmu 0.00% 2.54% 2.39% 2.65% 2.81% 3.13%
T2K RHC 1Rmu 0.00% 2.64% 2.28% 3.58% 3.69% 3.80%
T2K FHC 1Re 0.00% 2.55% 2.69% 3.95% 3.99% 8.87%
T2K RHC 1Re 0.00% 2.72% 4.35% 4.37% 6.35% 14.75%
T2K FHC 1Relde 0.00% 2.53% 7.87% 6.37% 9.21% 12.14%
SK SubGeV-elike-Odcy 3.53% 0.00% 2.55% 3.47% 1.42% 1.07%
SK SubGeV-elike-1dcy 3.00% 0.00% 3.39% 4.38% 3.03% 2.77%
SK SubGeV-mulike-0dcy 3.02% 0.00% 3.19% 2.72% 2.29% 2.16%
SK SubGeV-mulike-1dcy 3.08% 0.00% 2.58% 2.70% 1.28% 1.13%
SK SubGeV-mulike-2dcy 3.01% 0.00% 2.72% 4.34% 3.32% 3.28%
SK SubGeV-pillike 2.72% 0.00% 2.39% 3.61% 2.32% 2.34%
SK MultiGeV-elike-nue 4.43% 0.00% 3.26% 7.09% 5.49% 5.61%
SK MultiGeV-elike-nuebar 4.23% 0.00% 3.21% 4.43% 2.97% 2.87%
SK MultiGeV-mulike 4.20% 0.00% 2.73% 4.23% 2.87% 2.90%
SK MultiRing-elike-nue 4.30% 0.00% 3.18% 4.26% 2.76% 2.73%
SK MultiRing-elike-nuebar 4.22% 0.00% 3.3™% 4.24% 2.73% 2.63%
SK MultiRing-mulike 4.22% 0.00% 2.28% 4.12% 1.76% 1.75%
SK MultiRingOther-1 4.15% 0.00% 3.84% 5.03% 2.61% 2.56%
SK PCStop 4.37% 0.00% 4.80% 3.61% 4.45% 4.50%
SK PCThru 3.17% 0.00% 2.24% 3.82% 2.09% 2.09%
SK UpStop-mu 4.51% 0.00% 2.00% 3.77% 2.92% 2.99%
SK UpThruNonShower-mu 4.33% 0.00% 1.66% 3.90% 1.80% 1.76%
SK UpThruShower-mu 5.78% 0.00% 5.16% 3.72% 4.19% 4.22%

Table 11: Table of different groups of systematics uncertainty contributions to the joint
analysis. The uncertainty is calculated as the change in the total number of events in the
sample using to the post-fit constraints on the systematics. “SK atm. flux” refers to the
group of atmospheric flux systematics. “T2K beam flux” refers to the group of T2K beam flux
systematics. “SK det.” refers to the group of correlated far detector systematics. Note that
the two newly developed systematics associated with e/p PID at low pion momentum region
are included in “SK det.”. “Cross sections” refers to the group of cross-section systematics,
including the new ad-hoc Adler angle parameter. “Total Syst.” refers to the total error values
calculated by varying all the systematics including near-detector systematics and fixing the
oscillation parameters at Asimov A. “Total” refers to the total error values calculated by
varying all the systematics, including near-detector systematics, and oscillation parameters.
All the uncertainties are calculated from using the standard deviations of the posterior
predictive distributions. No reactor constraint is applied.
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Sample woRC rate | woRC shape | wRC rate | wRC shape
T2K FHC 1Rmu 0.195 0.240 0.191 0.241
T2K RHC 1Rmu 0.725 0.643 0.742 0.640
T2K FHC 1Re 0.515 0.209 0.498 0.222
T2K RHC 1Re 0.475 0.625 0.673 0.658
T2K FHC 1Relde 0.444 0.912 0.351 0.902
SK SubGeV-elike-Odcy 0.491 0.574 0.492 0.580
SK SubGeV-elike-1dcy 0.500 0.553 0.533 0.571
SK SubGeV-mulike-Odcy 0.559 0.356 0.559 0.338
SK SubGeV-mulike-1dcy 0.499 0.162 0.490 0.159
SK SubGeV-mulike-2dcy 0.559 0.491 0.591 0.486
SK SubGeV-pillike 0.481 0.162 0.482 0.162
SK MultiGeV-elike-nue 0.220 0.313 0.236 0.314
SK MultiGeV-elike-nuebar 0.454 0.207 0.431 0.201
SK MultiGeV-mulike 0.512 0.271 0.550 0.308
SK MultiRing-elike-nue 0.518 0.400 0.526 0.407
SK MultiRing-elike-nuebar 0.422 0.657 0.431 0.641
SK MultiRing-mulike 0.276 0.389 0.255 0.415
SK MultiRingOther-1 0.518 0.063 0.495 0.047
SK PCStop 0.545 0.682 0.554 0.689
SK PCThru 0.462 0.378 0.452 0.369
SK UpStop-mu 0.544 0.564 0.537 0.569
SK UpThruNonShower-mu 0.513 0.030 0.530 0.026
SK UpThruShower-mu 0.508 0.429 0.515 0.423
Total 0.387 0.111 0.420 0.106
T2K only 0.465 0.471 0.491 0.505
SK only 0.384 0.039 0.414 0.036
SK SubGeV only 0.569 0.251 0.591 0.251
T2K+SK SubGeV only 0.536 0.365 0.569 0.384
SK Multi-GeV /Ring, rest. 0.334 0.037 0.355 0.059
SK Multi-GeV /Ring, full 0.321 0.001 0.328 0.000

Table 12: Table of different p-values from the data fit broken down in to each SK sam-
ple. The y? calculation is based on both total event rate and shape, and the impact of
the reactor constraint is shown (“wRC” being with reactor constraint, and “woRC” being
without reactor constraint). A kinematic cut of F.. < 2 GeV is applied for T2K samples
and piep, < 10 GeV/c for SK samples.
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Figure 99: Rate (top) and shape (bottom) based posterior predictive p-values without reactor
constraint (left) and with reactor constraint (right), using Fye. < 2 GeV for the T2K samples,
and pep, < 10 GeV/c for the SK atmospheric samples.
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Figure 100: Shape-based posterior predictive p-value without reactor constraint for the SK
atmospheric samples, using pe, < 10 GeV/c.

91



FHC1Rmu-2020 p=0.240 RHC1Rmu-2020 p=0.643 FHC1Re-2020 p=0.209

< 100¢ 14 g 100 < 100f 24
3 E [ E 30 £ £
© oo © oo ARV 2
g F 12 8 F g ot
< C < C T C 20
S 80 S 80 25 2 80F
< £ = £ =< C 18
70F 10 70F 70F
E £ E 16
C C 20 C
60 60— 60
E g E g 1
501 5k s0F- 15 501 12
e ° a0F .. . a0f- 10
= C + e KRS I - El AN 8
30 4 30F 10 301 - 4¥ A -
E E E ) 6
20F 20 20
3 2 3 5 3 N
10F- 10F 10 2
oo bbb oo oo BBl ol b bbb boa oo Bl ol bbb bbb oo Lo Bl
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
X¥(fluct. draw, draw) X2(fluct. draw, draw) X3(fluct. draw, draw)
RHC1Re-2020 p=0.625 FHCCC1pi-2020 p=0.912
< 100 < 100¢ 40
§ E 35 § E
© | © |
I 90: g 90: 35
S sof 0 2 sop
% % T OF 30
70 2 70F
60F 60F 25
F 20 E
50 50 20
E 15 E
40 40 15
30 g 30
Eo ataiade .. 10 E 10
200 2 20
E 5 P _itmr,.
10F 10F o 5
o 0

ol bl bevn b e Lo s b o livn b b bevn b cn ben Lo,
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
X3(fluct. draw, draw) X2(fluct. draw, draw)

Figure 101: Shape-based posterior predictive p-value without reactor constraint for the T2K
beam samples, using Fro. < 2 GeV.

Figure 102: Comparison of prior and posterior constraints on flux parameters. From left to
right: atmospheric flux, beam near detector flux and beam far detector flux. For each plot,
the upper panel shows the overlay of central values and error bands of prior constraints (red
bands) used in joint-fit and posterior constraints (black markers) from joint-fit with reactor
constraint applied. The lower panel shows the error bands of the posterior constraints
normalised by the prior constraints. The red dashed line indicate the self-normalised prior
constraints. All the posterior errors are the standard deviations of the posterior probability
distributions.
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Sample Shape, piep,  Shape, cos 0,
T2K FHC 1Rmu 0.240

T2K RHC 1Rmu 0.643

T2K FHC 1Re 0.209

T2K RHC 1Re 0.625

T2K FHC 1Relde 0.912

SK SubGeV-elike-Odcy 0.574

SK SubGeV-elike-1dcy 0.553

SK SubGeV-mulike-Odcy 0.356

SK SubGeV-mulike-1dcy 0.162

SK SubGeV-mulike-2dcy 0.491

SK SubGeV-pillike 0.162

SK MultiGeV-elike-nue 0.313 0.098
SK MultiGeV-elike-nuebar 0.207 0.870
SK MultiGeV-mulike 0.271 0.841
SK MultiRing-elike-nue 0.400 0.622
SK MultiRing-elike-nuebar 0.657 0.630
SK MultiRing-mulike 0.389 0.588
SK MultiRingOther-1 0.063 0.755
SK PCStop 0.682 0.360
SK PCThru 0.378 0.321
SK UpStop-mu 0.564 0.336
SK UpThruNonShower-mu 0.030

SK UpThruShower-mu 0.429

Total 0.111 0.322
SK MultiGeV /ring rest. | 0.037 0.398

Table 13: Table of shape-based p-values from the data fit for each far-detector sample, where
T2K and SK SubGeV samples are projected on Ee. and prep, respectively, and SK multi-ring
and MultiGeV samples are projected on cosf,. The reactor constraint is not applied. For
the T2K samples, a E.. < 2 GeV cut is applied, and for the SK samples a pre, < 10 GeV/c
cut is applied.
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Figure 103: Comparison of prior and posterior constraints on BANFF cross-section param-
eters. In the plot, the upper panel shows the overlay of central values and error bands
of prior constraints (red bands) used in joint-fit and posterior constraints (black markers)
from joint-fit with reactor constraint applied. The lower panel shows the error bands of the
posterior constraints normalised by the prior constraints. The red dashed line indicate the
self-normalised prior constraints. All the posterior errors are the standard deviations of the
posterior probability distributions.
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Figure 104: Comparison of prior and posterior constraints on other cross-section parameters.
The middle plot is the high energy group. For each plot, the upper panel shows the overlay of
central values and error bands of prior constraints (red bands) used in joint-fit and posterior
constraints (black markers) from joint-fit with reactor constraint applied. The lower panel
shows the error bands of the posterior constraints normalised by the prior constraints. The
red dashed line indicate the self-normalised prior constraints. All the posterior errors are
the standard deviations of the posterior probability distributions.

Figure 105: Comparison of prior and posterior constraints on the correlated far detector
parameters. The left plot is the SK detector group plus the Up_Down_Asym_EnergyScale
and two newly developed systematics associated with e/u PID in the low lepton momentum
region. For each plot, the upper panel shows the overlay of central values and error bands
of prior constraints (red bands) used in joint-fit and posterior constraints (black markers)
from joint-fit with reactor constraint applied. The lower panel shows the error bands of the
posterior constraints normalised by the prior constraints. The red dashed line indicate the
self-normalised prior constraints. All the posterior errors are the standard deviations of the
posterior probability distributions.
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4.7 Comparison to OA2020 MaCh3 results

This section compares parameter constraints and Bayes factors between the MaCh3 joint-fit
with SK and T2K’s OA2020 result, on which it is based. The same reactor constraint on
sin? 03 is applied to the joint-fit as the T2K OA2020 analysis TN393 [1] from the PDG [10].
However, a different smearing of Ams3, is used: for joint-fit, the applied smearing in the joint
fit is 3.6 x 107° eV? and for OA2020 was 1.4 x 107> eV?* (Sec. 1.1 in TN393 [1]).

The post burn-in steps in OA2020 is about 170 million and in joint-fit is about 230

million. All results presented in this section are obtained from post burn-in steps.

4.7.1 Parameter constraints

This section presents both the one dimensional and two dimensional posterior comparisons.
For each oscillation parameter, results in the normal, inverted and both orderings are over-
laid. The red lines are contours and intervals from joint-fit and the black lines are contours

and intervals from OA2020. Different credible intervals are presented in different line styles.

One-dimensional posteriors Fig. 106 is the one dimensional contour comparison of dp.
The joint-fit has a slightly stronger constraint on d.p than OA2020, especially around d¢p ~ 7.
For the inverted ordering, both the joint-fit and OA2020 can exclude d.p at 0 and —7 between
20 and 30. For normal ordering and both ordering, joint-fit still can exclude both 0 and —7
between 20 and 30 and OA2020 can only exclude 0 between 20 and 30.

Fig. 107 is the one dimensional contour comparison of sin? fy3. For the normal ordering
and both orderings, the joint-fit shows a weaker preference for one octant over another,
consistent with the Bayes factor calculations presented earlier. For the inverted ordering,
compared with OA2020, joint-fit shows a slightly weaker preference of upper octant. This is
consistent with SK’s publication of atmospheric samples (see SK PTEP 2019).

Fig. 108 is the one dimensional contour comparison of AmZ,. Compared with OA2020,
the joint-fit constraint on Am3, is slightly weaker. The main reason is that the two results
use different Am3, smearing values and the one used by the joint-fit is larger than OA2020
by ~ 2.57 times.

Fig. 109 is the one dimensional contour comparison of sin®#;3. Two results agree very

well which is expected since both analyses used the same reactor constraint on sin? 6;3.

Two-dimensional posteriors Fig. 110 is the two dimensional contour comparison of

dop —sin? fy5. Since the same reactor constraint is applied in the two analyses, the constraint
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Figure 106: dcp for the real data analysis comparison between joint-fit (red lines) and OA2020
(black lines), with same reactor constraint and different Am3, smearing values applied, for
normal (left), inverted (center), and both (right) orderings.
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Figure 107: sin®fy3 for the real data analysis comparison between joint-fit (red lines) and
0A2020 (black lines), with same reactor constraint and different Am3, smearing values
applied, for normal (left), inverted (center), and both (right) orderings.
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Figure 108: Am3, for the real data analysis comparison between joint-fit (red lines) and
OA2020 (black lines), with same reactor constraint and different AmZ, smearing values
applied, for normal (left), inverted (center), and both (right) orderings.
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Figure 109: sin® ;5 for the real data analysis comparison between joint-fit (red lines) and
0A2020 (black lines), with same reactor constraint and different Am3, smearing values
applied, for normal (left), inverted (center), and both (right) orderings.

on sin? @3 are very similar. The better constraint on dep from joint-fit is more obvious from
Fig. 110 than Fig. 106.

Fig. 111 is the two dimensional contour comparison of dp — sin® f23. A better constraint
on dcp and a preference for maximal mixing from joint-fit compared with OA2020 can be
seen clearly.

Fig. 112 is the two dimensional contour comparison of dcp — Am3,. A slight relaxation
on the constraint of Am3, can be seen from joint-fit compared with OA2020. As explained
in the one dimensional contour comparison section, the main reason is the different Am2,
smearing value used in the two analyses.

Fig. 113 is the two dimensional contour comparison of Am2,—sin? #;3. Similar to Fig. 112,
a lightly weaker constraint on Am3, is seen from joint-fit compared with OA2020.

Fig. 114 and Fig. 116 are the two dimensional contour comparison of Am3, against
sin? fy3. The preference of a maximal mixing from joint-fit is very obvious in normal ordering
comparison. The relaxation of Am3, from joint-fit can be seen in both normal ordering and
inverted ordering.

Fig. 115 is the two dimensional contour comparison of sin? ;3 — sin?fy3. A stretch of
the contours towards the lower octant of sin®f,3 from joint-fit is quite obvious in normal

ordering. For inverted ordering, the stretch is smaller.
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Figure 110: d¢p — sin® 013 for the real data analysis comparison between joint-fit (red lines)
and OA2020 (black lines), with same reactor constraint and different Am3, smearing values
applied, for normal (left), inverted (center), and both (right) orderings.
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Figure 111: §cp — sin® fy3 for the real data analysis comparison between joint-fit (red lines)
and OA2020 (black lines), with same reactor constraint and different Am3, smearing values
applied, for normal (left), inverted (center), and both (right) orderings.
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Figure 112: §cp — Am3, for the real data analysis comparison between joint-fit (red lines)
and OA2020 (black lines), with same reactor constraint and different Am2, smearing values
applied, for normal (left), inverted (center), and both (right) orderings.
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Figure 113: Am2, —sin® 6,3 for the real data analysis comparison between joint-fit (red lines)
and OA2020 (black lines), with same reactor constraint and different Am3, smearing values
applied, for normal (left), inverted (center), and both (right) orderings.
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Figure 114: Am32, —sin® fy3 for the real data analysis comparison between joint-fit (red lines)
and OA2020 (black lines), with same reactor constraint and different Am3, smearing values
applied, for normal (left), inverted (center), and both (right) orderings.
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Figure 115: sin® ;3 — sin®fy3 for the real data analysis comparison between joint-fit (red
lines) and OA2020 (black lines), with same reactor constraint and different Am2, smearing
values applied, for normal (left), inverted (center), and both (right) orderings.
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Figure 116: sin® fy3 — Am2, for the real data analysis comparison between joint-fit (red lines)
and OA2020 (black lines), with same reactor constraint and different Am3, smearing values
applied, for normal (left), inverted (center), and both (right) orderings.

4.7.2 Bayes factors for atmospheric parameters

The joint-fit data fit results with reactor constraint is presented in Tab. 7 and OA2020 results
with reactor constraint in presented in Table 13 of TN393 [1]. Tab. 14 summarises the figures
in one table. As seen from the previous comparison of contours, the joint-fit has a smaller
Bayes factor for upper octant over lower octant compared with OA2020 and a larger Bayes
factor for normal over inverted ordering despite different Am2, smearing values used. The
Bayes factors from both analyses do not reach a level of significance where conclusions could
be drawn to exclude either possibilities of the mass hierarchy or the octants. However, both

analyses find consistent preferences of upper octant and normal ordering.

T2K+SK atm. | T2K 2020
B(UO/LO) 1.78 3.36
B(NO/IO) 7.33 420

Table 14: Comparison of Bayes factors for the joint fit between T2K beam and SK atmo-
spheric neutrinos, and the main results from T2K. Same reactor constraint is applied to both
results. Different smearing of sin? a5 is applied.
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5 Results comparisons

This section is dedicated to show the comparison of the joint-fit results from MaCh3 and
PTheta, the comparison of joint-fit results and T2K official analysis (OA2020) from both
MaCh3 and PTheta, and also the investigation of joint-fit results differences between MaCh3
and PTheta. All MaCh3 joint-fit results are produced from post burn-in steps (burn-in
being 80,000 steps). All distributions shown in this section have the same reactor constraint
applied, which was the same as OA2020.

5.1 Joint-fit results comparison between MaCh3 and PTheta

Parameter constraints Fig. 117, Fig. 118, Fig. 119 and Fig. 120 show the overlay of joint-
fit results for dep, sin? fas, Am2, (JAm2,|) and sin? #3 from MaCh3 and PTheta respectively.
Fig. 121 and Fig. 122 are the overlay comparison of Jarlskog invariants using flat prior on d¢p
and sin dqp respectively. Results from PTheta are produced from PTheta MCMC method.
Hence, for Ay? representation, MCMC results are converted for the purpose of comparisons.

In Fig. 117, PTheta has a stronger constraint on d.p than MaCh3 for normal ordering
with very similar d.p value for the highest-posterior density. Although the posterior at
this value is different, they are almost indistinguishable in the regions of no CP violation
(0cp = 0, 7). This was also observed in OA2020 TN393 [1] (Fig. 61). For inverted ordering,
the PTheta result shows a shift to higher Am2, compared to MaCh3. For either orderings,
both fitters exclude sin dop = 0 at 20. A similar observation can be drawn from Fig. 121 and
Fig. 122. Fig. 121 shows both fitters exclude dop = 0 at 20 (see Fig. 49) with a flat prior on
0cp, and PTheta has a stronger constraint. Fig. 122 shows a similar but weaker tendency
when there’s a flat prior on sin d.p, and PTheta has a slightly stronger constraint.

In Fig. 118, for normal ordering hypothesis, no strong preference to upper/lower octant
is seen in either fitter results. For normal ordering, compared with the slightly bimodal
contour shape from PTheta, MaCh3 shows a stronger preference for maximal mixing. For
inverted ordering, both fitters show a weak preference to the upper octant. However, both
results are consistent with each other at 1o.

For normal ordering in Fig. 119, a consistent shift of the best-fit and credible intervals of
PTheta is observed relative to MaCh3. Since PTheta has only |[Am3,| for inverted ordering,
MaCh3 results of Am2, are converted to |[Am3,| by subtracting |Am3,| from |Am3,|. A
similar shift of Am? also exists for inverted ordering. Potential explanations are documented

in Sec. 5.3.
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From Fig. 120, it is clear that the results from two fitters use the same reactor constraint.

> I > L B
‘a Normal ordering 4 @a FE Inverted ordering
é E — Mach3 B é = — Mach3 =
5 F PTheta E 8 E PTheta E
T F E T F E
B = — B E =
T f E € E E

Bl e [ JJ_‘g{ﬁ N I I SO [ T
-3 1 2 3 -3 1 2 3
écp 6CP

o 30— T T ™ N 30— T T T T T T

< C Normal ordering ] < C Inverted ordering J ﬁ ]

250 Macha 3 250 Mach3 f JM =
F PTheta ] £ PTheta il 1k 3
200 ] 200 “Lﬂ ]
B 1 E b4
C ] C 1
15? - 15j LLi
8 1 i '
10— - 1031\ -
5%\ : 5; \ {
Ol M | | | P | o . P IR
G—3 -2 -1 0 1 2 3 0—3 -2 2 3
9 9

CP CcP

Figure 117: Overlay of dcp from data fits of MaCh3 (blue solid line) and PTheta (orange
dashed line). Upper row shows the posterior probability distributions and lower row shows
Ax? distributions. Left column shows the normal ordering results and right column shows
the inverted ordering results. Same reactor constraint is applied.

Bayes factors for atmospheric parameters Tab. 15 summarises the Bayes factors for
octant hypotheses and mass ordering from the joint fit results of MaCh3 and P-Theta. The
Bayes factors from the two fitters are quite consistent. In terms of Bayes factor value, both
fitters show a weaker preference of one octant over another and both fitters show a stronger
preference to normal ordering compared to OA2020 results [1]. The Bayes factor values from

both fitters are not sufficient to make a conclusion on hypotheses.
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Figure 118: Overlay of sin? 3 from data fits of MaCh3 (blue solid line) and PTheta (orange
dashed line). Upper row shows the posterior probability distributions and lower row shows
Ax? distributions. Left column shows the normal ordering results and right column shows
the inverted ordering results. Same reactor constraint is applied.

MaCh3 | P-Theta
B(UO/LO) 1.78 1.57
B(NO/IO) 7.33 8.98

Table 15: Comparison of Bayes factors for the joint fit between MaCh3 and P-Theta. Same
reactor constraint and same smearing of sin” fa3 are applied to both results. P-Theta results
are documented in TN459 [12] Table 5 in v1.1.
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Figure 120: Overlay of sin® 6,3 from data fits of MaCh3 (blue solid line) and PTheta (orange
dashed line). Upper row shows the posterior probability distributions and lower row shows
Ax? distributions. Left column shows the normal ordering results and right column shows
the inverted ordering results. Same reactor constraint is applied.
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Figure 121: Overlay of J from data fits of MaCh3 (blue solid line) and PTheta (orange
dashed line). Left plot shows the normal ordering results and right plot shows the inverted
ordering results. Same reactor constraint is applied. Flat prior on dcp is assumed.
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5.2 Joint-fit results and OA2020 from MaCh3 and PTheta

Fig. 123, Fig. 124, Fig. 125 and Fig. 126 show the joint-fit results overlaid with T2K official
results (OA2020) from MaCh3 and PTheta. MCMC results from MaCh3 are converted to
Ax? distributions for comparison purpose.

For normal ordering comparison in Fig. 123, both fitters show stronger constraints on dcp
in the joint-fit compared to T2K-only. MaCh3 joint-fit results are closer to MaCh3 OA2020
results because MaCh3 intended to always strictly follow OA2020 prescriptions, documented
in TN393 [1]. The differences of joint-fit P-Theta and OA2020 can be found in TN459 [12]
(see Appendix A.1). For normal ordering, both fitters’ results from joint-fit can exclude
sin dcp = 0 at 20 which shows better constraint compared to OA2020. For inverted ordering,
similarly, both fitter results show better constraint than OA2020.

In Fig. 124, for normal ordering and inverted ordering, there is a weaker preference for
the upper octant in the joint-fit results (both fitters) compared to OA2020 (both fitters).
This behaviour mainly comes from the SK atmospheric samples, as discussed in the P-Theta
joint-fit results TN459 [12] (see Fig 21 in v1.1), and can also be seen in 2019 SK oscillation
analysis [13]. Especially in normal ordering, both fitters in the joint-fit show a preference of
maximal mixing.

For Am? in Fig. 125, the two fitters from OA2020 are very close and MaCh3 results from
the joint-fit have the highest posterior density point very close to that from OA2020, but
show a weaker constraint than OA2020. This might due to that the joint-fit results adopt
a larger smearing on Am32, than OA2020. Interestingly, PTheta’s results from the joint-fit
show a non-negligible shift compared to both OA2020 and joint-fit MaCh3 results. Detailed
discussion of this shift of Am3, can be found in TN459 [12] (see Appendix A in v1.1).

Fig. 120 shows that the same reactor constraint is applied to the results shown in this

section.
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Figure 123: Overlay of d.p from data fits of joint-fit and T2K official analysis. The solid
lines are results from joint-fit and the dashed lines are results from OA2020. Blue lines are
MaCh3 results and orange lines are PTheta results. Left plot shows the normal ordering Ax?
distributions and right plot shows the inverted ordering results. Same reactor constraint is
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5.3 Potential explanation of results differences

In this section, implementation differences are investigated to understand the differences
between the joint-fit results from MaCh3 and PTheta.

Kinematic cut: the order of applying the cut and applying the shifts (e.g. Coulomb
correction) to the reconstructed kinematics in the event selections is different in the two
fitters. MaCh3 follows the OA2020 style and applies the cut before any corrections, whilst
PTheta applies the cut afterwards following the OA2021 approach. When testing this option,
PTheta uses the same order as MaCh3 while keeps other implementation unchanged.

E,¢c binning: MaCh3 uses E,.. binning for beam p-like samples and E,... — 6 binning
for beam e-like samples while PTheta uses E,.. — 6 binning for beam p-like samples and
Prec — 0 for beam e-like samples. When testing this option, PTheta uses the same binning
as MaCh3 whilst keeping other implementation choices unchanged.

Kinematic cut + F,.. binning: to investigate the combined effect of the above two
implementation differences, PTheta uses the same implementation as MaCh3 whilst keeping
other implementation choices unchanged.

Near detector fit: PTheta and MaCh3 fit near detector samples in different ways.
MaCh3 fits near detector samples simultaneously with far detector samples while PTheta
uses BANFF inputs to propagate near detector constraints to far detector samples. This has
been previously studied in OA2020, as documented in TN393 [1]. Its impact will be studied
in the next round of TNs.

Fig. 127, Fig. 128, Fig. 129 and Fig. 130 show the overlays of joint-fit results for the
oscillation parameters from MaCh3 and PTheta with different options of implementation
described above.

In Fig. 127, PTheta with the same beam sample binning pulls the results towards MaCh3
results while the results with the same kinematic cut implementation cannot explain the fitter
results differences very well. The kinematic cut 4+ E,.. binning option shows very similar
results compared to F,.. binning option.

In Fig. 128, similar to Fig. 127, E,.. binning option pulls PTheta results towards MaCh3
and can thus better explain the differences. The kinematic cut + FE,.. binning option
shows very similar results compared to E,... binning option for inverted ordering.

In Fig. 129, unlike in Fig. 127 and Fig. 128, kinematic cut option pulls PTheta results
towards MaCh3 the most for both normal and inverted orderings. The kinematic cut
+ FE,.. binning option shows very similar effect as kinematic cut. Although the three

listed options cannot perfectly explain the shift in Am? for both orderings, they still show
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Figure 127: Overlay of dcp from joint-fit of MaCh3 and PTheta testing different framework
implementation options. The solid blue lines are results from MaCh3 joint-fit. The orange
dashed lines are results from PTheta joint-fit. The green dashed lines are results from
PTheta joint-fit using the same kinematic cut implementation as MaCh3 (i.e.applying the
kinematic cut before applying any corrections to the kinematic). The red dashed lines are
results from PTheta joint-fit using the same T2K beam sample binnings as MaCh3 (i.e.using
Eec rather than p,.. for e-like samples). The magenta dashed lines are results from PTheta
joint-fit using both the same kinematic cut and same beam sample binnings as MaCh3. Left
plot shows the normal ordering Ax? distributions and right plot shows the inverted ordering
results. Same reactor constraint is applied.

73 non-negligible influence on the contours.

784 Fig. 130 confirms the same reactor constraint used in all results shown in this section.
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Figure 128: Overlay of sin® §y3 from joint-fit of MaCh3 and PTheta testing different frame-
work implementation options. The solid blue lines are results from MaCh3 joint-fit. The
orange dashed lines are results from PTheta joint-fit. The green dashed lines are results from
PTheta joint-fit using the same kinematic cut implementation as MaCh3 (i.e.applying the
kinematic cut before applying any corrections to the kinematic). The red dashed lines are
results from PTheta joint-fit using the same T2K beam sample binnings as MaCh3 (i.e.using
E,c. rather than p,. for e-like samples). The magenta dashed lines are results from PTheta
joint-fit using both the same kinematic cut and same beam sample binnings as MaCh3. Left
plot shows the normal ordering Ax? distributions and right plot shows the inverted ordering
results. Same reactor constraint is applied.
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Figure 129: Overlay of AmZ, and |Am3,| from joint-fit of MaCh3 and PTheta testing different
framework implementation options. The solid blue lines are results from MaCh3 joint-fit.
The orange dashed lines are results from PTheta joint-fit. The green dashed lines are results
from PTheta joint-fit using the same kinematic cut implementation as MaCh3 (i.e.applying
the kinematic cut before applying any corrections to the kinematic). The red dashed lines are
results from PTheta joint-fit using the same T2K beam sample binnings as MaCh3 (i.e.using
E,. rather than p,. for e-like samples). The magenta dashed lines are results from PTheta
joint-fit using both the same kinematic cut and same beam sample binnings as MaCh3. Left
plot shows the normal ordering Ax? distributions of Am2, and right plot shows the inverted
ordering Ax? distributions of |AmZ,|. Same reactor constraint is applied.
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Figure 130: Overlay of sin® 6,5 from joint-fit of MaCh3 and PTheta testing different frame-
The solid blue lines are results from MaCh3 joint-fit. The
orange dashed lines are results from PTheta joint-fit. The green dashed lines are results from
PTheta joint-fit using the same kinematic cut implementation as MaCh3 (i.e.applying the
kinematic cut before applying any corrections to the kinematic). The red dashed lines are
results from PTheta joint-fit using the same T2K beam sample binnings as MaCh3 (i.e.using
E,c. rather than p,. for e-like samples). The magenta dashed lines are results from PTheta
joint-fit using both the same kinematic cut and same beam sample binnings as MaCh3. Left
plot shows the normal ordering Ax? distributions and right plot shows the inverted ordering

work implementation options.

results. Same reactor constraint is applied.
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5.4 Comparison of the systematic posterior distributions

In this section, we compare the post-fit systematic constraints between MaCh3 and P-theta.
We should note that the comparisons shown in this section do not show the effect of correla-
tions between systematic parameters. In addition, some parameters have intrinsic differences
at the implementation level. Therefore, even if there are differences in the individual pa-
rameter’s distribution, it does not necessarily mean that we have a problem in either of the
fitters.

To perform this comparison, we construct the MCMC posterior distributions for each
systematic using the 1 million steps randomly sampled from the post-burn-in chains for
MaCh3 and 20 million steps for P-theta. The summary of the mean and variance of each
systematic parameter’s posterior distribution is shown in Fig. 131.

For the T2K and SK flux systematic parameters, MaCh3 and P-theta distributions agree
within 1 post-fit o ranges. We can see a trend that MaCh3 has larger values of flux systematic
parameters in the low-energy region (< 1 GeV). A similar trend was seen in the comparison
of near detector constraints of these parameters between MaCh3 and BANFF (Appendix 3
of TN397 [7]). Since these parameters are well constrained by the near detector fit, the
differences in the post-fit distributions could also affected by the difference of near detector
fit. This can be confirmed once the effect of the near detector fit is studied.

For the T2K detector systematic parameters, we only compare the ones relevant to the
p-like samples because the two fitters use the different binning for the e-like samples (MaCh3
uses E. binning while P-theta uses momentum binning) and we cannot simply compare the
corresponding systematics. These T2K detector systematic parameters show very consistent
results between the two fitters, except for the v, /v, background components in the p-like
samples (SK_nu_dis nue nueb_CC, SK_nubar nue nueb_CC) where MaCh3 has stronger con-
straints compared to P-theta. We should note that, as described in Section 6.6 of TN422 [5],
P-theta includes the secondary interaction (SI) systematics not as the independent dials but
as the combined effect in the detector systematics. On the other hand, MaCh3 implements
these systematics as independent dials, and therefore the detector systematics do not include
the effect of SI in MaCh3. These different treatments of SI systematics could cause the dif-
ferences seen in the T2K detector systematic parameters. Among the other T2K and SK
detector systematics, the SI systematics (SI_x) and the energy-scale systematics (SK_p_scale,
SK_atm p_scale, UpDown_Asymmetry Energy_Scale) also show some differences. These sys-
tematic parameters are implemented in different ways and are known to behave differently

due to the different implementation philosophies of both fitters.
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The cross-section systematics in the high-energy model and the new cross-section system-
atics introduced in the joint analysis have very consistent distributions between MaCh3 and
P-theta. The low-energy cross-section systematics show some differences, but they mostly
agree within 1 post-fit o ranges. The posterior distributions of selected cross-section system-
atics are shown in Fig. 132. Similarly to the T2K flux systematics, these distributions show
a similar trend with the near detector constraints of these parameters between MaCh3 and
BANFF (Appendix 3 of TN397 [7]). Therefore, these differences could be further understood
once the effect of the near detector fit is studied.

In conclusion, we have observed some differences in the systematic posterior distribu-
tions but these differences are thought to be understandable level considering the different

implementations of each systematic between MaCh3 and P-theta.
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Figure 131: Comparison of the post-fit systematic constraints between MaCh3 and P-theta
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computed from the MCMC posterior distributions. The center and error of each parameter
error band show the arithmetic mean and variance of posterior distributions. The parameter

values are normalized using their prior mean and variance.
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6 Summary

This technical note presented the joint analysis of SK atmospheric neutrinos and T2K beam
neutrinos with the MaCh3 framework, with model updates in TN456 [6]. Analyses of Asimov
data (set A) and the real data were presented, simultaneously fitting the near detector
samples and far detector samples (5 T2K beam samples and 18 SK atmospheric samples)
using Markov chain Monte Carlo to sample the posterior probability in systematic phase
space.

For both the Asimov A and real data analyses, results were presented with and with-
out the reactor constraint on sin?#;3 applied. All results were smeared with Am32, by
3.6 x 107° eV? from the fake-data studies. For each fit, one dimensional and two dimen-
sional oscillation parameter contours were produced, and Bayes factors of octant hypotheses,
mass ordering and CP violation were calculated. For the data fit, the posterior predictive
spectra (both with and without reactor constraint) were compared to the data spectra and
the corresponding posterior predictive p-values (total p-value and by-sample p-values) were
extracted. The data fit results were also compared to the MaCh3 analysis in OA2020 and
to P-Theta results in the joint fit and OA2020.

Mass ordering For the Asimov A fit, the Bayes factor of normal ordering over inverted
ordering B(NO/IO) is 7.26(3.98) with(out) the reactor constraint applied. For the data fit,
the Bayes factor of normal ordering over inverted ordering B(NO/IO) is 7.33(3.76) with(out)
the reactor constraint applied. Compared to T2K OA2020 MaCh3 results, the Bayes factor
B(NO/IO) is 4.2(1.8) with(out) the reactor constraint applied. Although none of the values
reach a level of significance where conclusions could be drawn to exclude either possibilities
of the mass ordering, we can still see an enhancement of substantial evidence of normal

ordering over inverted ordering according to Jeffrey’s scale [14].

CP violation For the Asimov A fit, the Bayes factor B[(sindcp < 0)/(sindep > 0)]
is 24.5(6.3) with(out) the reactor constraint applied. For the data fit, the Bayes factor
Bl(sindep < 0)/(sindep > 0)] is 50.0(10.5) with(out) the reactor constraint applied. From
the dcp contours of data fit with reactor constraint, d., = 0 can be easily excluded between
20 and 30 credible intervals. Hence, from both the contours and Bayes factor values, joint-fit

results show support for CP violation neutrinos.
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sin? fy3 octant For the Asimov A fit, the Bayes factor of upper octant over lower octant
B(UO/LO) is 2.72(1.67) with(out) the reactor constraint applied. For the data fit, the
Bayes factor of upper octant over lower octant B(UO/LO) is 1.78(0.82) with(out) the reactor
constraint applied. Compared to OA2020 MaCh3 results [1], joint-fit data fit results show a

weaker preference of upper octant.
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