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Astronomy 203 Problem Set #2: Solutions

28 September 1999

1. Caustics and rainbows. Consider light incident a distance y from the center on a dielectric sphere with radius
r and index n, that is refracted at the surface, reflects internally at the next, and then refracts out of the sphere,
as shown in the figure below.
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Figure 1: setup for Problem 1.

a. Show that as one varies y from zero to r, the angle ∆θ by which the ray is deviated by the sphere passes
through a minimum. Obtain expressions for the minimum value of ∆θ and for the value of y that
corresponds to this minimum.

(Hint: prove first that all the angles of incidence, reflection and refraction within the sphere, θ1-4, have the
same magnitude.)

(Hint II: don’t try to apply the matrix formulation of ray-tracing all the way through.)

First, the geometry. Note in Figure 1 that the two triangles ABC and BCD within the sphere that
are composed of the rays and the radii drawn to the ray-sphere intersections are isosceles, because
two sides of each triangle are radii and thus equal in length. In isosceles triangles the angles
opposite the congruent sides are congruent, so θ θ1 2=  and θ θ3 4= . The ray reflects at point B, so
θ θ2 3= , and thus all the labelled angles inside the sphere have the same measure. Furthermore,

θ θ θ θ5 4 1= = =arcsin sin arcsin sinn n ib g b g (1)

Let’s call the angles θ θ θ= =i 5b g  and ′ = = = =θ θ θ θ θ1 2 3 4b g  henceforth.

Put the coordinate origin at the center of the sphere, so that the equation for the circle in Figure 1

is y z r2 2 2+ = . Then the equation that describes the left half of the circle, on which the light is



Astronomy 203/403, Fall 1999

 1999 University of Rochester 2 All rights reserved

incident, is z r y= − −2 2  (note that the negative root is taken). At point A, the slope of the sphere
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dz
dy

y

r y
=

−
=

2 2
tanθ    , (2)

whence

sin ,

cos .

θ

θ

=
− +

=

= −
−

− +
= − −

y

r y y

y
r

r y

r y y

y

r

2 2 2

2 2

2 2 2

2

21

e j

e j

(3)

(Note that the signs work out so that the surface-normal unit vector, ′νννν , points at the center of the
sphere.) By Snell’s Law, we have

sin sin′ = =θ θ1
n

y
nr

   . (4)

This is really all we need to know to express ∆θ  in terms of y. At point A, the ray is deviated by
an angle θ θ− ′ . At point B, it is deviated further by an amount π θ− ′2 . At point D, the last
deviation, like the first, is by the amount θ θ− ′ . The total deviation is the sum of these:
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As usual, we look for extrema by taking

d
dy r y n r y

y y

r y n r y

y
r

n

∆θ =
−

−
−

= =

− = −

= −

2 4
0

1
4

3
12 3

2 2 2 2 2 0

2
0
2 2 2

0
2

0
2

 at 

or and

,

,

.

e j (6)

Thus no (real) extremum exists for n > 2. Take the second derivative to see what sort of extremum
we have:
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Substitute y0  from Equation (6) into this and you get



Astronomy 203/403, Fall 1999

 1999 University of Rochester 3 All rights reserved

d

dy
y

r
n

r
r

n

r
n

n r
r

n

n

r n n

n

r n n

2

2 0

2

2
2

2
3 2

2

2 2
2

2
3 2

2

2 2 3 2 2 3 2

2

2 2

3 2

2

3 2

2
3

12 3

9
12 3

4
3

12 3

9
12 3

2 12 3
3

1

1
3

2

4 4
3

2 12 3
3

3
1

1
4

3
1

12 3

∆θb g =
−

− −
F
HG

I
KJ

−
−

− −
F
HG

I
KJ

= −

−F
HG
I
KJ

−
−F

HG
I
KJ

L

N

MMMMMM

O

Q

PPPPPP

= −
−

F
HG
I
KJ −

−
F
HG
I
KJ

L
N
MM

O
Q
PP

= −

/ /

/ /

/ /

n

r n

2

2 2

3 2

2
3

1
0

−
F
HG
I
KJ >

/
,

(8)

so if the extremum exists, it’s a minimum. The minimum value of ∆θ  is given by putting the
result (6) into Equation (5):
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b. Make a sketch of the situation for rays incident on the sphere at several different values of y between zero
and r. Use the result to argue that a uniformly illuminated sphere appears brightest in scattered light when
viewed near the direction of this minimum-deviation ray, because the deviation angle passes through a
minimum.

Such minima (or maxima) in deviation angles, and corresponding intensity peaks, produced by optical
elements are called caustics.

If the sphere is uniformly illuminated, the scattered light will be most intense in directions in
which a particularly large number of rays are directed. This is the case for scattering angles near
∆θ min ; for light incident both at slightly larger and slightly smaller y, the rays will reflect and
refract near the “minimum” ray: one can see the pile-up (caustic) clearly in Figure 2. Still brighter
caustics are seen within the sphere.

c. Water is a dielectric with refractive index n ≈ 4 3 ; raindrops are spherical blobs of water. Use these facts
with the results from parts a and b to explain how rainbows work. Calculate the angle from the direction of
incident sunlight at which one should look to see a rainbow.

Sunlight falls on raindrops with an angular spread of only about half a degree – that is, the sun’s
rays are nearly parallel. Thus a peak in scattered sunlight will appear at an angle
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from the direction of sunlight, or 42 03.
from the spot on the sky opposite the Sun.
(That is, one sees light from all the drops
for which the sun-drop-observer angle is

137 97. .) The refractive index of water
varies with wavelength – it’s about 1.330
at λ = 0.7 µm (red) and 1.342 at 0.4 µm
(violet) – so the peaks in the intensity of
scattered light of shorter wavelength occur
at slightly larger ∆θ . We would, and do,
see this scattered light as a circular arc on
the sky, blue on the inside and red on the
outside: a rainbow.

The rainbow we have just considered is called the primary rainbow. Light that takes another
internal reflection also leads to a caustic, and gives rise to the secondary rainbow. For this rainbow,

∆θ  turns out to be 130  (as you can easily show!), so its circular arc on the sky is about eight
degrees larger in radius than the primary, and the colors are reversed. One interesting aspect of
the two rainbows is that the primary caustic is a minimum in ∆θ , but the secondary is a

maximum: no light in the first two rainbows is scattered into the range ∆θ = −130 138 . Verify
this next time you see a double rainbow: the sky indeed appears to be darker between the
rainbows than it does on either side of them. (This effect is known as “Alexander’s dark band,”
after Alexander of Aphrodisias, who first described it in writing, around the turn of the third
century A.D.)

2. Consider a concave paraboloidal mirror of on-axis focal length 4 m, with incident light rays intersecting its
surface at its center and at a point 0.5 m from the optical axis. If the two incident rays are inclined at an angle
of 1° to the paraboloid's optical axis, but still share the same incidence plane, where do the reflected rays
intersect each other? Where do the reflected rays intersect the paraxial focal plane?

This problem is only slightly different from Example 4.1. We shall set the problem up such that the
plane of incidence (and the plane of reflection) is the x-z plane, as shown in Figure 1. In this
coordinate system, ϕ and δ are both zero.

The incident rays have the same direction cosines:
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Brightest scattered light

Figure 2: Uniform-intensity light incident on the
upper half of a dielectric sphere, and the intensity
peak in scattered light from the minimum in the
deviation angle (a caustic).
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As drawn, the equation describing the parabola is
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so the slope of the parabola is
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and the slope of the normal to the parabola is
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Since we have calculated these in such a way that a slope is equal to tan θ, where θ is the angle the
line makes to the x-axis, the direction cosines of the normal unit vector νννν’ are obtained from
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Figure 3: setup for problem 2.
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where the minus signs are chosen, as in Example 4.1, to give cosθ i = ⋅ ′νννν νννν  the same sign as the ratio
of refractive indices: negative, since reflection is considered. For the two rays incident at x = 0 and x =
500 mm at ψ = 1°, this comes to

′ =
′
′
′

L

N
MMM

O

Q
PPP

′ =
−

L

N
MMM

O

Q
PPP

′ =
−

−

L

N
MMM

O

Q
PPP

νννν νννν νννν( )
( )
( )
( )

, ( ) , ( )
.

.
.x

x

x

x

γ
δ
ε

0
0
0
1

500
0 06238

0
0 99805

 mm (16)

Now we can calculate the incidence angle from cosθ i = ⋅ ′νννν νννν :

cos ( ) ( )θ γγ εεi x x= ⋅ ′ ′ + ′νννν νννν ====   . (17)

The direction cosines of the outgoing ray are given by the usual matrix equation. Since all of the
action is in the x-z plane, this equation becomes
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The determinant of the coefficient matrix is
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Cramer's rule can be used here to obtain the direction cosines for the reflected ray:
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′′ =δ ( ) ;x 0 (21)
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Putting the numbers in for the components of νννν and νννν’ (see Equations (11) and (16)), the resulting
reflected rays look like this:
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Now we can figure out where they wind up after reflection. The equation of a line with the ray's
slope, passing through the reflection point (x,z), is
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and for ′′z  = -4000 mm, we get the location of our two rays in the paraxial focal plane:

′′ = ′′x x( ) . , (0 69 820 500 mm  mm) =  70.488 mm . (25)

— that is, they miss each other in the focal plane by ∆x = 0.668 mm, in contrast to the behavior of the
on-axis rays that reflect from the same two points on the mirror. This is an example of coma. Where do
the rays intersect? We have two equations in two unknowns:
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that can be solved easily: ′′x  = 69.91 mm, ′′z  = -4005.33 mm.

One can use RayTrace 5.0 to confirm these answers. (Try using DX = 1, NP = NR = 1, CR =
List, and RX = 0 and 500 to trace single rays that hit the mirror at x = 0 and 500 mm.) In fact,
RayTrace 5.0 does the calculation exactly like we did. Every dot in your spot diagram represents
several calculations like that. Aren't you glad computers don't get bored?

3. For the paraboloidal mirror of problem 2, use RayTrace 5.0, with a bullseye ray pattern, to plot spot diagrams
for bundles of parallel rays incident

a parallel to the paraboloid's axis, and

b. inclined at an angle of 1° to the paraboloid's axis.

Compare these results to those obtained in class (Example 4.1, for the on-axis rays) and in problem 2.
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The result is shown in Figure 4. Important prescription parameters: RA = -8000, EC = 1, FT =
-4000, FI = -1, FI = Far field, RP = Bull's eye, DX = 0, 1. I used 100 rays in the
trace. Note in the context of Problem 2 that for the off-axis case a point was indeed produced about
0.67 mm from the central ray. All of the on-axis rays focus to one point, as expected from Example
4.1..

Choose and work out only one of the following three problems. Share your results with your classmates
as indicated.

I have to work out all three, of course. Your sympathy is hereby accepted.

4. A telescope with coma. Consider a Cassegrain telescope with a paraboloidal primary mirror with diameter 2
m and focal length 4 m. The secondary mirror is a hyperboloid with eccentricity 2.0, 0.5 m in diameter.

a. Compute the radius of curvature of this mirror at its apex, and its position relative to the primary, if it
produces a Cassegrain focus at the apex of the primary, with a plate scale 1/3 that of the prime focus.

The hyperboloid has two focal lengths, f1 and f2. It needs to place the Cassegrain image 4 m away
from the prime focus, so

f f1 2 4+ =  m   . (27)

Since f = c±a for hyperboloids, this mirror has

c a c a c− + + = ⇒4 m = 2 m    , (28)

or, since the eccentricity is ε= c/a = 2,
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The radius of curvature at the apex is

r
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Since

Figure 4: results of the ray traces for problems 3a (left) and 3b (right), plotted at the same
scale, 0.2 mm per tic.
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a magnification of 3 results from the choice of a convex hyperboloid with its closer focus
coincident with the paraboloid's focus. Thus, you should make the mirror with a radius of
curvature of 3 m and put its apex 3 m from the apex of the primary.

b. What is the Cassegrain plate scale, in arcsec mm-1?

The paraboloid’s plate scale is

1
f

=  0.25 rad m  =  51.6 arcsec mm-1 -1   ,

and the Cassegrain plate scale is 1/3 of that, because of the magnification, or 17.2 arcsec mm-1.

c. Using RayTrace 5.0, generate spot diagrams in the Cassegrain focal plane for ray bundles incident on the
primary mirror, and use the RMS diameter of the spot pattern (computed by the program as Sm_RMS) to
identify the off-axis angle θUD that produces a distorted image equal in size to the atmospheric-turbulence-
broadened image (the “seeing disk”), taken to be 1 arcsec in diameter. One usually calls 2θUD the
unblurred field of view of the telescope. Plot a spot diagram for the offset angle θUD.

An example optical prescription called CASS.RAY is provided for your convenience in setting up this
problem; from inside RayTrace 5.0, one can gain access to this prescription by use of the Fetch command.

In RayTrace's terms, here are the dimensions of the telescope, in millimeters: AP = 2000, RA =
-8000, EC = 1, FI = -1, FT = -3000 for the primary mirror, and AP = 500, RA = -
3000, EC = 2, FI = 1, FT = 3000 for the secondary mirror. If you want to be fancy, you
can include the part of the primary obscured by the secondary mirror as an extra surface in
between the mirrors, as is done in the example prescription; in this case you would use FT = 0
for the primary, and AP = 2000, FT = -3000, FI = -1, SS = CO, and S1 = 500 for the
secondary's shadow. This has a minor effect on the appearance of the spot diagram, notable only
for the absence of the central ray in the result. By varying DX and/or DY in the trace menu, one

Figure 5: spot diagram for the Cassegrain telescope of problem 4, for rays incident at
θUD. The plot scale is 0.025 mm per tic.
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can find the offset angle that produces an arcsecond's worth of blur, 0.058 mm (1/17.2). I get RMS
= 0.05814 at DX = 0.184°, or

2 21θUD = ′   .

Coma is the dominant aberration, as you can see in spot diagram for this offset angle, shown in
Figure 5. On-axis rays (DX = DY = 0) all converge on a single point, as expected.

d. Ask some of your classmates who did the other two problems to show you their results for 2θUD. Compare
the performance of this telescope with the other two. Which one offers the widest unblurred field of view?

I’ll make the comparisons as I go along during the next two solutions.

5. A telescope without coma. Repeat problem 4, using the Ritchey-Chretien telescope from problem 1: same
dimensions as the Cassegrain but with primary eccentricity 1.0368 and secondary eccentricity 2.2389. Again,
plot a spot diagram for the offset angle θUD. Compare and comment on the appearances of the aberrations in the
Cassegrain and Ritchey -- Chretien telescopes.

a,b Since this R-C telescope has the same dimensions and focal point as the Cassegrain, it must have
the same effective focal length and plate scale as well. See, therefore, the solution for parts a and b
of problem 4.

c,d Input for the prescription: AP = 2000, RA = -8000, EC = 1, FI = -1, FT = -3000
for the primary mirror, and AP = 500, RA = -3000, EC = 2, FI = 1, FT = 3000 for
the secondary mirror. The shadow of the secondary would be included in exactly the same way
as the classical Cassegrain telescope. The unblurred field of view for the R-C comes out a bit
larger than for the Cassegrain: I get Sm_RMS = 0.05814 at DX = 0.21610, so 2θUD = 26’.
There's no coma in the R-C; note in the spot diagram shown in Figure 4 that all the spots are
centered about the ones from the central rays. This feature, and the elongation of the spot, are
your clue that the dominant aberration is astigmatism. For DX = DY = 0 the spot winds up with
Sm_RMS = 0.000179 mm, still very much smaller than seeing or diffraction, although it's not a
point, and the best focus is slightly more than 3 m from the secondary. There turns out to be a
little bit of uncorrected spherical aberration present.

Because the R-C can give a bigger picture for the same blur, or less blur for the same size picture,
the design is adopted more frequently as time goes on; for instance, in the Hubble Space
Telescope.

6.  A telescope with spherical aberrations. Same as problem 4, but with spherical mirrors (eccentricity = 0)
having the same size and apex curvature, and replacing parts c and d with the questions below.

a,b Once again, this telescope has the same dimensions and close to the same focal point, and
therefore practically the same plate scale, as the other two. See the solutions to parts a and b,
problem 4.

c. What is the position of the best focus? (That is, where does the “circle of least confusion” lie along the
optical axis, judging from the RMS diameter of the focal-plane spot diagram?) Why is it different from the
Cassegrain and Ritchey-Chretien telescopes?

Judging by the minimum RMS spot size for 100 rays in a bullseye pattern, the focal plane is 2.8945
m past the secondary (0.11 m above the vertex of the primary). Thin-mirror geometrical optics
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tells you that it should be 3.00 m, same as for the Cassegrain and Ritchey-Chretien telescopes —
here you see the effect of spherical aberration.

d. Plot a spot diagram for the central focus (i.e. on-axis rays, DX = DY = 0). What is the angle on the sky that
corresponds to the RMS diameter of this distorted image? Compare the performance of this telescope with
the other two.

The RMS diameter of the blurry on-axis image comes out to 1.9159 mm (34”), as is shown in
Figure 7. Most of the blur is spherical aberration from the primary mirror. (How can you tell that
it's not the secondary’s fault?) Note that there was very little geometrical blurring for the central
focus in the Cassegrain and Ritchey-Chretien telescopes. By the standards of optical and infrared
astronomy, this spherical-mirror telescope is useless.

Figure 7: spot diagram for the spherical-mirror telescope of problem 6, for on-axis
rays and the best focus. The plot scale is 0.5 mm per tic.

Figure 6: spot diagram for the Ritchey-Chretien telescope of problem 5, for rays
incident at θUD. The plot scale is 0.025 mm per tic. Compare this plot to Figure 5,
which is done to the same scale.


