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Astronomy 203 Problem Set #5: Solutions

2 November 1999

1. Using RayTrace 5.0 and the prescriptions developed in Problem Set #3, problem 3, generate spot diagrams, on
the same scale, for on-axis rays in the focal plane of the Hubble Space Telescope, as designed and as originally
realized. (Or use the plots you generated in that problem set…) On each of these plots, draw circles to indicate
the FWHM diameter of the central diffraction maximum, and the diameter of the first dark ring, for a
wavelength of λ = 0.55 µm. Comment on the effect the errors in the primary mirror must have had on early
observations with HST.
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Figure 1: Comparison of ray traces for the original, "real" and the corrected or "ideal"
Hubble Space Telescope (points) with the effects of diffraction (bold circles in the center
and right-hand panel). Details of the prescription are given in the solutions to Problem
Set #3.

From Figure 13.4 in the lecture notes we see that the FWHM diameter of the central maximum of the
Airy pattern is about the same as the radius of the first dark ring; at this wavelength, that’s 1.2λ/D =
2.75×10-7 radians =5.7×10-2 arcseconds, which, with a plate scale of 3.575 arcseconds per millimeter,
comes to about 0.016 mm in the focal plane. Circles with this diameter and this radius are overlaid on
pre-repair and ideal HST spot diagrams in Figure 1. Note that the blur from diffraction is much
greater than that from aberrations for the ideal HST, but is dwarfed by the aberrations in the pre-
repair HST (RMS diameter 0.37 arcseconds – see the solutions to problem set 3). The telescope was
supposed to be diffraction-limited, but instead had turned out to be SA-limited, and the resolution is
degraded by a large factor. It was still better than the usual ground-based telescopes, but nowhere
near as good as it was supposed to be. For instance: it was hoped that HST could be used to resolve
individual Cepheid variable stars in galaxies 20 Mpc away, thus to eliminate a few of the weaker
rungs in the extragalactic distance-scale "ladder". With its range reduced to about 2 Mpc by the flaw,
this, among other important projects, could not be attempted until the repair mission had succeeded.
Now Cepheids have been detected by HST in M101 (about 20 Mpc away, and a member of the Virgo
cluster), among many other galaxies similarly distant, and we have a much more reliable Hubble
constant than we did before.

2. Gaussian beams stay Gaussian as they propagate. Show that a Gaussian near-field distribution with 1/e
radius ρN,
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gives rise to a Gaussian far-field distribution,
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that has 1/e radius λz/πρN.

The diffraction integral is simply
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Completing the square in the exponent, we have, for x′,
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and similarly for y′, so that the diffraction integral becomes
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Now change variables:

u
x i

du
dx

u

v
y i

dv
dy

v

N

x N

N

N

y N

N

= ′ + = ′ − ∞ < < ∞

=
′

+ =
′

− ∞ < < ∞

ρ
κ ρ

ρ

ρ
κ ρ

ρ

2

2

   , (4)

and we have
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Change these variables, in turn, to the equivalent polar coordinates:
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to make the diffraction integral look like
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The integral over ϕ simply comes out to 2π. Now make one more variable change in the other
integral:

w r dw rdr w= = < < ∞2 2 0   , (8)

and it becomes trivial:
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But κ κx x z= /  and κ κy y z= / , so this is just the desired result:
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a Gaussian, with 1/e width λz/πρN.

3. Most telescope primary mirrors have central obscurations, in addition to being circular, so their diffraction
patterns differ somewhat from Equations 13.14-15.

a. Derive an expression the far-field intensity as a function of κ θa  for an annular aperture, with outer half-
diameter a and inner half diameter ka (k < 1).

The annulus is still axisymmetric, so the calculation goes just the same as that for the filled
circular aperture in Lecture 13, except for the bounds on the radial integral. We can therefore join
the derivation at the point of that integration, Equation 13.6, and change the lower integration
bound from ′ =r 0  to ′ =r ka , or
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Again we integrate by use of Equation 13.7, the recurrence relation between Bessel functions of
different order:
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and again choose m = 1, but this time integrate it over different bounds:
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We substitute this result into Equation (11) and obtain
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where we have substituted A a= π 2  and θ = q r/ , as before. The intensity on the screen becomes
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Recall, from Equation (13.13), that
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Finally, we use Equation (17) in Equation (15) and obtain
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b. Plot the intensity divided by peak intensity, I a k Iκ θ , ,a f a f0  against κ θa , on the same plot with

I a Iκ θa f a f0  for the filled circular aperture, as given by Equations 13.14-15, for k = 0.2 – a rather typical
value for telescopes, and used in our Cassegrain telescope example in §9.2 – and a more extreme value, k =
0.9. What are the major differences between the diffraction patterns of filled circular apertures and annular
apertures?
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See Figure 2. For small k the difference between the diffraction patterns of the filled aperture and
the annulus are pretty small. For larger values of k one sees the Airy disk and the dark and bright
rings shrink in diameter, and the intensity of the bright rings increase relative to the peak.
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Figure 2: far-field intensity relative to peak for diffraction from a filled circular aperture
(blue curves) and from a circular annulus (red curves) for two different values of the ratio
of the annulus’ inner and outer diameter, k = 0.2 and 0.9.

4. Show that a pair of thin lenses separated by the sum of their focal lengths, with a waist of the input beam at the
focal point of one of the lenses, produces an output beam whose waist location is independent of wavelength, and
derive the ratio of the output and input beam waist diameters. (This arrangement is usually called a "Gaussian
beam telescope", and is useful in radio-astronomy applications in which a large frequency or wavelength range
must be used.)

Start with a beam waist (radius ρ01) at the focus of a lens with focal length f1. The image waist lies a
distance d2 on the opposite side of the lens:
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or d2 = f1. The image beam waist has a new size, ρ02. The image position is d1' = f2 away from the next
lens, so the final beam waist will thus be a distance d2' on the other side of the second lens, given by

d
f

d
f

d
f f

f
f

f
f f

2

2

1

2

1

2

2
02

2

2

2

2

2

2

2

2
02

2

2

21
1

1

1
1

1

1
′

= +

′
−

′
−

F
HG

I
KJ

+
F
HG
I
KJ

= +
−

−
F
HG

I
KJ +
F
HG
I
KJ

=
πρ

λ
πρ

λ

, (20)

or d2' = f2 – independent of wavelength.

The first image waist radius is given in terms of the original waist radius as
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which is not independent of wavelength. For the final beam waist radius, however, we have
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which is wavelength-independent. The magnification of the beam waists is given simply by the ratio
of the focal lengths. (Note that this the same result that one gets in geometrical optics.)


