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Spectral line imaging at visible and infrared wavelengths

All spectroscopy involves the use of 
interference to distinguish one wavelength 
from another.

 The larger the phase difference between 
signals – or path-length difference, in 
most of our applications – the more 
finely wavelengths can be 
discriminated. 

 Spectral resolution ∆λ/λ at wavelength 
λ is characterized by the instrument’s 
bandwidth ∆λ for a truly 
monochromatic signal.

• Two signals at wavelengths 
separated by ≥ ∆λ are resolved; 
otherwise they’re unresolved.
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Interference filters

This semester we use multilayer dielectric 
interference filters, in front of the CCD, to 
make spectral line images. 

 See the AST 203 notes to learn how 
these are designed and built.

 Upside: compact, extremely uniform in 
transmission and bandwidth. 

 Downside: non-adjustable;  hard to get 
high enough spectral resolution to 
isolate single lines; not the ultimate in 
sensitivity. 

 In some wavelength ranges one has to 
have extra filters set for an off-line 
wavelength, to subtract continuum 
emission.
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Spectrographs

More sophisticated and more wavelength-selective instruments:
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Spectrographs (continued)

Use of detector arrays with such instruments:
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Scanning Fabry-Pérot interferometer

Best for high-resolution imaging 
of single lines or line profiles. 

 High-reflectivity (r), low-
absorption, parallel mirrors 
whose (wide) optical 
separation nd can be 
controlled and scanned 
precisely.

• Adjust d: piezoelectric 
scanning

• Adjust n: pressure 
scanning
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Scanning Fabry-Pérot interferometer (continued)

 Usually a sequence of 2-3 FPIs must be used, to isolate a single large-m order of the 
scanning one.
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Long-slit grating spectrograph

Best for point sources, or objects in 
which only one spatial dimension is 
important.

 Detector array sees a long 
wavelength span at pixel along 
a 1-D strip of the sky.

 Spectrograph’s entrance slit 
usually 2-10 pixels wide, 
adjustable for seeing at the cost 
of spectral resolution.

 Can only make spectral images 
by stepping the telescope in the 
direction perpendicular to the 
entrance slit, hopefully by a 
fraction of the slit width per 
step. (Doesn’t work great.)
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Integral field spectrograph (continued)

Best for full spectra of each 
pixel in a relatively small 
neighborhood around a 
compact object.

 Optically slice up the 2-d 
field, and image each 
slice along a different 
segment of the slit of a 
grating spectrograph.

 Then reconstruct the 
data cube after 
detection.

 Invented by Ira Bowen 
in the 1930s, before 
CCDs or computers.
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European 
Southern 
Observatory

https://ui.adsabs.harvard.edu/abs/1938ApJ....88..113B/abstract
https://www.eso.org/public/usa/teles-instr/technology/ifu/


Integral field spectrograph (continued)
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 Current implementations feature 

• lenslet arrays, relaying the 
image to an

• optical fiber bundle, used to 

• rearrange the image along 
the spectrograph slit, whence 

• it is detected in long-slit mode, 
and

• reconstructed via computer.

 No light lost at slit due to seeing variation, tracking errors, etc. Thus it’s great for 
precision wideband spectra of point sources (i.e. exoplanets). 

European Southern Observatory

https://www.eso.org/public/usa/teles-instr/technology/ifu/


Imaging Michelson interferometer

Ideally, the best of all: full field imaging, and 
high-resolution spectra in every pixel. 

 Input light is divided with a 
beamsplitter.

 Half the light is reflected from a 
stationary mirror…

 the other half from a mirror that can 
move.

 The light joins up again at the 
beamsplitter, but half of it has an extra 
path-length difference from the other 
half. 

 This light is focused on the detector 
array. 
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(J. Graham)

http://w.astro.berkeley.edu/%7Ejrg/ngst/michelson.html


Imaging Michelson interferometer (continued)

 The movable mirror is scanned 
repeatedly over a fixed range.

 Array signal (each pixel) is recorded 
during the scan, such that the range is 
sampled finely.

 Average these scan recordings and 
Fourier-transform the result, and one 
gets a complete spectrum at every pixel.

• Wavelength coverage is 
determined by the sampling rate.

• Resolution is determined by 
maximum path-length difference:
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Imaging Michelson interferometer (continued)

Down sides:

 Much more complicated than other 
options; many more challenging high-
precision control systems are necessary.

 Thus, expensive.

 Vulnerable to additional sources of 
noise and systematic error. 

 So there aren’t many around, yet. One 
such is SITELLE at the 4-meter Canada-
France-Hawaii telescope, which covers 
the whole visible band (in six chunks) 
and achieves ∆λ/λ ~ 10-4 in a 2048×2048 
pixel, 11-arcmin square field. 
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Le Spectromètre Imageur à Transformée 
de Fourier pour l'Étude en Long et en 
Large des raies d'Émission.

https://www.cfht.hawaii.edu/Instruments/Sitelle/SITELLE.php


Spectral lines of atoms and ions at visible wavelengths

In this class we will be concerned with 
electronic transitions of atoms and ions. They 
comprise the visible emission from H II 
regions, planetary nebulae, supernova 
remnants, and HH objects.

 Recombination lines of hydrogen (H I)

• Electric dipole transitions, after 
recombination in a high-n state. 

 Forbidden lines of other elements, like 
O, O+, O++ or S+... 

• …whose forbidden-line spectra are 
referred to as [O I], [O II], [O III] 
and [S II], respectively.
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Z Name
0 + ++ +++ ++++

1 H 13.6
2 He 24.6 54.4
3 Li 5.4 75.6 122.5
4 Be 9.3 18.2 153.9 217.7
5 B 8.3 25.2 37.9 259.4 340.2
6 C 11.3 24.4 47.9 64.5 392.1
7 N 14.5 29.6 47.4 77.5 97.9
8 O 13.6 35.1 54.9 77.4 113.9
9 F 17.4 35.0 62.7 87.1 114.2

10 Ne 21.6 41.0 63.5 97.1 126.2
11 Na 5.1 47.3 71.6 98.9 138.4
12 Mg 7.6 15.0 80.1 109.3 141.3
13 Al 6.0 18.8 28.4 120.0 153.8
14 Si 8.2 16.3 33.5 45.1 166.8
15 P 10.5 19.8 30.2 51.4 65.0
16 S 10.4 23.3 34.8 47.2 72.6
17 Cl 13.0 23.8 39.6 53.5 67.8
18 Ar 15.8 27.6 40.7 59.8 75.0
19 K 4.3 31.6 45.8 60.9 82.7
20 Ca 6.1 11.9 50.9 67.3 84.5
21 Sc 6.6 12.8 24.8 73.5 91.7
22 Ti 6.8 13.6 27.5 43.3 99.3
23 V 6.7 14.7 29.3 46.7 65.3
24 Cr 6.8 16.5 31.0 49.2 69.5
25 Mn 7.4 15.6 33.7 51.2 72.4
26 Fe 7.9 16.2 30.7 54.8 75.0
27 Co 7.9 17.1 33.5 51.3 79.5
28 Ni 7.6 18.2 35.2 54.9 76.1

Ionization potential (eV)
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		Z		Name		Ionization potential (eV)
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		23		V		6.7		14.7		29.3		46.7		65.3				128.13		150.6		173.4		205.8		230.5		255.7		308.1		336.277		896		976		1060		1168		1260		1355		1486		1569.6		6851.3		7246.12

		24		Cr		6.8		16.5		31.0		49.2		69.5				90.6349		160.18		184.7		209.3		244.4		270.8		298		354.8		384.168		1010.6		1097		1185		1299		1396		1496		1634		1721.4		7481.7		7894.81

		25		Mn		7.4		15.6		33.7		51.2		72.4				95.6		119.203		194.5		221.8		248.3		286		314.4		343.6		403		435.163		1134.7		1224		1317		1437		1539		1644		1788		1879.9		8140.6		8571.94

		26		Fe		7.9		16.2		30.7		54.8		75.0				99.1		124.98		151.06		233.6		262.1		290.2		330.8		361		392.2		457		489.256		1266		1358		1456		1582		1689		1799		1950		2023		8828		9277.69

		27		Co		7.9		17.1		33.5		51.3		79.5				102		128.9		157.8		186.13		275.4		305		336		379		411		444		511.96		546.58		1397.2		1504.6		1603		1735		1846		1962		2119		2219		9544.1		10012.12
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The ions on our menu

Lowest-energy states 
of the ground 
electronic 
configurations of 
O++ and S+, 
compared to the 
states of H.

 Note the scale 
difference 
between the 
two plots.

 Only the 
brightest visible 
lines are 
shown. 
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Step 1 of analysis, short form

The main point of the H II region and HH object projects is to make images of the 
abundance ratios χO++ = n(O++)/n(H) and χS+ = n(S+)/n(H).

 Answers will be very different for the two classes of objects, which you should seek to 
explain. 

 The intensity of an optically-thin j to i hydrogen recombination line is given, apart from 
extinction, by

where

and the integral is over distance s along the line of sight through the nebula.
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r unit volume of electrons and protons;



Step 1 short form (continued)

 Our recombination line, Hα (j = 3, i = 2), can safely be taken to be optically thin.

 The [O III] and [S II] lines are not recombination lines; they are collisionally excited.

• Meaning that electrons collide with these ions in their ground state, and leave 
them in the upper state of the line…

• whereupon the ion radiates a photon, or collides with another electron, to get back 
to the ground state. 

• We see the photons that are radiated. The optically-thin intensity of the j to i
transition is

 These lines can be taken to be optically thin as well. 
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.
4 4ji ji j ji j p

ji ji

hc hcI A n ds A f n dsχ
πλ πλ

= =∫ ∫



Step 1 short form (continued)

 Here

other terms are as before, and again the integral is over distance s along the line of sight 
through the nebula.

 We know none of the properties of the nebula a priori. Well, almost none: we know that 
hydrogen densities more than about np = 10000 cm-3 are very rare outside of neutral 
molecular clouds. 

 This should be compared to the critical density of each forbidden line: the density at 
which the rates of radiative and collisional decay of the upper state are equal. 
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1is the spontaneous radiation rate (Einstein A coefficient) in sec ;

is the number density of the ion in state ;

is the fraction of the ion's population in state ;

is the ratio of the ion's num

ji

j

j

A

n j

f j

χ

−

ber density to that of hydrogen;



Step 1 short form (continued)

 If the actual density is much smaller than the critical density, the fraction of the ions in 
the upper state is given by 

where
is also calculated quantum-mechanically. 

 This is generally a good approximation for visible forbidden lines. In which case the 
intensity ratio of a forbidden line and a hydrogen recombination line determines the 
relative abundance χ: for example, if χ is uniform along the line of sight,
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,e ij
j

ji

n
f

A
γ

=

( ) 3 1 is the collisional excitation rate coefficient in cm  sec  of state .ij T jγ −

[O III]
H H [O III] O

H [O III]

[O III] [O III]H
O

H [O III] H

, ;
4 4

.

e
e p ji p

ji

nhc hcI n n ds I A n ds
A

I
I

α α
α

α

α α

γ
α χ

πλ πλ

λ α
χ

λ γ

++

++

= =

⇒ =

∫ ∫

The integral 
cancelled out.

ijγ



Step 1 short form (continued)

 The only other nuance is that our [S II] filter includes two [S II] lines of similar strength 
that we can’t resolve. 

 But this just adds one more term proportional to the S+ abundance:
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H H
H

[S II] [S II]1 [S II]2S S
[S II]1 [S II]2

[S II]1 [S II]2
S

[S II]1 [S II]2
1

[S II]1 [S II]2 H
S

[S II]1 [S II]2 H

,
4

4 4

;
4

e p

e p e p

e p

hcI n n ds

hc hcI n n ds n n ds

hc n n ds

α α
α

α

α
πλ

γ χ γ χ
πλ πλ

γ γ
χ

λ λ π

γ γ α
χ

λ λ λ

+ +

+

+

−

=

= +

 
 = +
 
 

 
 = +
 
 

∫

∫ ∫

∫

[S II]

H
.

I
Iα α



Step 1 short form (continued)

 The numbers you need are

 Relative abundance in typical H II regions:
(McCleod et al. 2016). 

 Details: all the recombination coefficients, collision strengths, and A coefficients can be 
found on line in the CHIANTI atomic database:

https://www.chiantidatabase.org/chianti.html
(choose the Direct Access link)

and references therein.

 The CHIANTI data-file column headers are given by Del Zanna et al. 2015, 
appendices A1-A2. (Often easier to get the data from the original references.)
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3 1 3 1
[S II]1 [O III]

3 1 31 1
[S II]2 H

9 9

9 4

6.514 10 1.133 10

9.702 10 8.  643 1

 cm  sec  cm  sec

 cm  sec cm  sec0α

γ γ

γ α

−− −

−− −

−

−

= =

= =

× ×

× ×

( ) ( )4 5
O S3.3 0.5 10 ,  1.0 0.1 10χ χ− −= ± × = ± ×

https://academic.oup.com/mnras/article/455/4/4057/1274302
https://www.chiantidatabase.org/chianti.html
https://www.aanda.org/articles/aa/pdf/2015/10/aa26827-15.pdf
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