Periodically-variable objects

By which we mostly mean . i 5

pulsating stars, spotted s | £ . N o

stars, or eclipsing systems, ¥ 8 3

but from which we also : il Mhad o b5 00, .
learn to characterize any . o '

sort of time variation.

One-stop shopping for .
periodogram calculations:

the NStED periodogram
tool, o

which calculates Lomb- s
Scargle, box-fitting least ey
squares, and Plavchan

periodograms on your

input data. . :
p M 15 from Mees, true color with color saturation

increased, blinking two images taken 1.5 hours apart.

Lesson 7 Astronomy 244/444, Spring 2020


https://exoplanetarchive.ipac.caltech.edu/cgi-bin/Pgram/nph-pgram
http://www.pas.rochester.edu/%7Edmw/Mees/Images/M15.RGB.crop.blink.gif

Cadence

The rate at which photometric observations are
made on potentially variable objects is called the
cadence.

Q0 Cadence has to be sufficiently fast to sample
the variability thoroughly.

Q If you know what the range of time
durations is, a cadence can be designed.

Q If the range is HUGE, like from millisecond
flares to years-long orbits, the design can be
a challenge.

O The Vera Rubin Telescope (nee LSST) will
use many hybrid cadences, with a baseline
of two back-to-back short exposures per
filter per visit, and two visits per week to
every object that’s up.

I |
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G ~ aslurfeito )
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Cadence (continued)

QO The main Kepler survey had roughly
half-hour exposures every half hour for
about 90 days at a time, for several
years.

* So it was very good at detecting
exoplanetary orbits and most
forms of stellar pulsation.

* We'll use Kepler data in today’s
examples.
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Finding variables: the simple way

In AST 244 /444, we look for . . ;
periodic variability in globular s | r te N <.
cluster members, and in transiting
exoplanetary systems, and seek to
measure the periods.

Most practical way to spot the
variation:

Q For RR Lyr stars in globular
clusters: blink the images, as at
right. Look hard.

O For exoplanetary systems: s
normalize the images for all i
stars except for the target, then
perform aperture photometry
on every image for the target
star. Look for the dip.

M 15 from Mees, true color with color saturation
increased, blinking two images taken 1.5 hours apart.
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http://www.pas.rochester.edu/%7Edmw/Mees/Images/M15.RGB.crop.blink.gif

Finding variables in long-time-series data

The precise and accurate ways to identify variables and measure periods are predominantly
these.

O Periodograms: power spectra derived from specialized forms of the Fourier transform,
particularly the Lomb-Scargle periodogram (Scargle 1982, VanderPlas 2017).

O Phase-dispersion minimization: light curves folded and phase-shifted to minimize
dispersion of the brightness at a given phase, relative to a prior or to a smoothed
version of the light curve (Stellingwerf 1978, Plavchan et al. 2008).

0 Both work better, the better the photometric accuracy and the longer the continuous
time series.

O It's pointless to use either one unless the time series spans at least a few periods.

* But that sometimes doesn’t matter, e.g. if all you're after is the magnitude and
dispersion of a population of variables, as in the baseline globular-cluster
experiment.
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https://ui.adsabs.harvard.edu/abs/1982ApJ...263..835S/abstract
https://arxiv.org/abs/1703.09824
https://ui.adsabs.harvard.edu/abs/1978ApJ...224..953S/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJS..175..191P/abstract

Fourier transforms

A few reminders from MTH 281 or its equivalent:

a

a

The Fourier transform of an evenly-spaced infinite time series of data f(¢) is the
amplitude spectrum F(w):

F(a))zﬁ]gf(t)e_i”tdt =i ;,, TF e dw

If the data f(t) were a sinusoid with (angular) frequency @, the transform F(w) would
be a pair of delta functions: infinitely narrow spikes at ta,.

If the time series were to last only for a time T, the amplitude spectrum for a pure
sinusoid would not be infinitesimally narrow. For example,

T .
F(w):—; [ eteritar = 2 51?(a)—a))0]2T
7T T T C!)—CI)O

the sinc function, with central peaks at @, ~27/T wide (FWHM).
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Discrete Fourier transforms

O Inreal life, transforms are discrete, as our time-series data are series of averages over
intervals of time: samples.

Q If the sampling interval is uniform at At for N+1 total samples, then the transform
becomes

N .
F(a)k) — Z fne—la)leAt
n=0
O or, with Aw= 27/ NAt and o, = kAo,

N .
F = Z fne—27zzkn/N
n=0
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Power spectra

O “Periodogram” is another name for power spectrum, apart from an extra factor of the
inverse of the number of samples:

2
(Discrete) power

2
fo (a)) B ‘P(a))‘ B spectrum

N .

2
Classical (Schuster)

1
P _
5(@) N periodogram

N

O To be precise, the periodogram is an estimator of the power spectrum, as the power
spectrum is a continuous function of the parameters of the star or other emitting region,
but most of us ignore the distinction.

Lesson 7 Astronomy 244/444, Spring 2020 8



Aliasing

O With discrete sampling, say N+1 10 Bty N R
samples at interval At, one cannot take
seriously a frequency higher than @, = 0.8
7/ At, as power is incorrectly mapped to _
these frequencies. This called aliasing,. 06 Nzg; st
Q In the frequency domain instead of the 0.4 !
time domain: to represent the frequency
content of a signal that is zero outside 0.2
the range *,, one must sample the W
frequency data at a rate of at least v, = -
0 50 100 180 200 2580 300
2(0)0/272') frequency

O This is known as the Nyquist theorem,
and the minimum sampling rate is
known as the Nyquist rate.

A power spectrum extended to
frequencies way too high, to show the
aliases. From vanderPlas 2017.

* So the transform of page 5 has no
aliases.
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Nonuniform sampling and the Lomb-Scargle periodogram

0 Sampling intervals in astronomical observations are hardly ever uniform. For a set of
samples at times t,, and upon writing the classical periodogram as

2

(TN 2 N
Ps(w)zﬁ {Z%)fncosa)tn} +{Z%)fnsina)tn} ,

Scargle (1982) generalized the expression to

and showed that there are unique forms for A, B, and t such that the new periodogram
reduces to the classical one in the limit of uniform sampling interval, and give other
desirable properties too, like analytically-computable statistics.

Lesson 7 Astronomy 244/444, Spring 2020 10


https://ui.adsabs.harvard.edu/abs/1982ApJ...263..835S/abstract

Lomb-Scargle periodogram (continued)

Q It also turns out that this generalized periodogram is identical to what you get by fitting
a sinusoid to the data at every frequency by »?> minimization, as was shown by Lomb

(1976).

O The result is called the Lomb-Scargle periodogram:

) [% fu cosa)(tn —T):| ) {% fu sina)(tn —r)}
P (a)):E n:?\] E n=0

N
Z cos? a)(tn —T) Z sin’ a)(tn —z')
n=0 n=0

1 N N
T = ——arctan sin 2wt Ccos 2wt

2

, where

and is much easier to calculate than it looks.

O Its use is now universal for measuring periods from time-series data on objects with
large duty-cycle variability, such as RR Lyr and Cepheid variable stars. Built into the
the NStED periodogram tool.
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https://ui.adsabs.harvard.edu/abs/1976Ap%26SS..39..447L/abstract
https://exoplanetarchive.ipac.caltech.edu/cgi-bin/Pgram/nph-pgram

A large duty cycle oscillation:

Terminology

N
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Example 1: NR Lyrae, a perfect RR Lyrae star

Full light curve, and a close up, from Kepler Q2. Kepler gives really high-quality data.

i: MOSLM I L\\j\hl ,\lltw Lnl}\ ‘Rl\\t ‘Rlbklu‘}\l‘kl\)\llﬁ \M\\M WMM[ 1\ *WJ\‘WJ\W il
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NR Lyrae (continued)

L-S periodogram, after “prewhitening:” basically filtering out low frequencies.
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NR Lyrae (continued)

Zoom in on fundamental mode. Note square-sinc-function-like sidebands. The pulsation
period is 16.369 hours.
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Example 2: RR Lyrae, the archetype

Light curve, from Kepler Q2. Note the periodic envelope, classically known as the Blazhko

(1907) effect.
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https://ui.adsabs.harvard.edu/abs/1907AN....175..325B/abstract

RR Lyrae (continued)

L-S periodogram, after prewhitening. Power at half-integer “harmonics!”
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RR Lyrae (continued)

Zoom in on fundamental mode. Note lopsided sidebands, which are the power-spectrum
counterpart of the Blazhko effect. The pulsation period is 13.605 hours.
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RR Lyrae (continued)

“1.5%h harmonic:” sidebands present but not the main pulsation. Half-integer features in the
power spectrum - a.k.a. period doubling - shows the origin of the Blazhko effect in
nonlinear pulsation (Szabo et al. 2010). No feature like this in NR Lyrae.
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https://ui.adsabs.harvard.edu/abs/2010MNRAS.409.1244S/abstract

How to make a phase-folded light curve

For long time-series observations, it is useful and customary to phase-fold the light curves,
so that all the events in the series are plotted together according to their phase within the
period.

QO All programming languages have a built-in function called mod that can be used to map
time ¢, into phase ¢, like so:

&, = %mod(tn,&)mgb ,
where

ot 1is the period of the variability (pulsation, orbit,...) and
O¢ 1is an initial phase offset.

0 mod takes every ot segment of the time series and shifts it to earlier times by the
amount ot. The other factors just convert the period to the phase scale, 0 to 2r radians,
and shifts the scale overall to center it in plots as desired.
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Example 3: Kepler-6 b

Kepler-6 b is a classic hot Jupiter. The early, Kepler Q1, data are published in the Kepler
special issue (Dunham et al. 2010); this is Q2.
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https://ui.adsabs.harvard.edu/abs/2010ApJ...713L.136D/abstract

Kepler-6 b (continued)

Phase folded over ¢t = 3.234723 days, d¢ = -0.37, phase values divided by 27 before plotting.

1.005 T T T

Folded relative flux
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-0.05 0 0.05

Phase (orbital periods)

Lesson 7 Astronomy 244/444, Spring 2020 22



Phase-dispersion minimization

This procedure immediately suggests an automated, model-independent way to fold the
light curve and determine the best value of the period ot

a

Q

a

Start with a value for &t. Generate an initial folded light curve. Calculate its mean and
variance,
_ 5 _\2
fand o =3 (f, - f) /(N—1)
n

Break the folded light curve into M bins, each containing m points. Within each bin j,
calculate the mean and variance sz_ Sum the variances to create

2
52 = Z(m]-—l)s]2 Zm]-—M and ®:S—2
] ] o

If ot is not the true period, then s? will be close to ¢® and © ~ 1.

But as ot approaches the true period, ® approaches a minimum, with ® < 1.

So vary ot to find the minimum, or incorporate it all into a root-finding routine.
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Example 4: minimizing phase dispersion in Kepler-6 b

1.005

Folded relative flux

0.985
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0.05
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Phase-dispersion minimization (continued)

O This means of folding light curves and determining periods was invented by
Stellingwerf (1978) and has been in standard use ever since.

O A particularly nice version by Plavchan et al. (2008) has been incorporated in the
NStED periodogram tool.

Lesson 7 Astronomy 244/444, Spring 2020
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https://exoplanetarchive.ipac.caltech.edu/cgi-bin/Pgram/nph-pgram

Example 5: phase-folded light curve for NR Lyrae

The smooth run of the points and the error-bar ends probably indicates that the tiny
uncertainties are still overestimated. (See next lesson.)
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Example 6: phase-folded light curve for RR Lyrae

No errorbars plotted, as the large Blazhko effect would make it too confusing.
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