
Periodically-variable objects

By which we mostly mean 
pulsating stars, spotted 
stars, or eclipsing systems, 
but from which we also 
learn to characterize any 
sort of time variation.

One-stop shopping for 
periodogram calculations:

the NStED periodogram 
tool,

which calculates Lomb-
Scargle, box-fitting least 
squares, and Plavchan
periodograms on your 
input data. 
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M 15 from Mees, true color with color saturation 
increased, blinking two images taken 1.5 hours apart.

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/Pgram/nph-pgram
http://www.pas.rochester.edu/%7Edmw/Mees/Images/M15.RGB.crop.blink.gif


Cadence

The rate at which photometric observations are 
made on potentially variable objects is called the 
cadence. 

 Cadence has to be sufficiently fast to sample 
the variability thoroughly. 

 If you know what the range of time 
durations is, a cadence can be designed. 

 If the range is HUGE, like from millisecond 
flares to years-long orbits, the design can be 
a challenge.

 The Vera Rubin Telescope (nee LSST) will 
use many hybrid cadences, with a baseline 
of two back-to-back short exposures per 
filter per visit, and two visits per week to 
every object that’s up. 
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Cadence (continued)

 The main Kepler survey had roughly 
half-hour exposures every half hour for 
about 90 days at a time, for several 
years. 

• So it was very good at detecting 
exoplanetary orbits and most 
forms of stellar pulsation.

• We’ll use Kepler data in today’s 
examples. 
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Finding variables: the simple way

In AST 244/444, we look for 
periodic variability in globular 
cluster members, and in transiting 
exoplanetary systems, and seek to 
measure the periods. 

Most practical way to spot the 
variation:

 For RR Lyr stars in globular 
clusters: blink the images, as at 
right. Look hard.

 For exoplanetary systems: 
normalize the images for all 
stars except for the target, then 
perform aperture photometry 
on every image for the target 
star. Look for the dip.
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M 15 from Mees, true color with color saturation 
increased, blinking two images taken 1.5 hours apart.

http://www.pas.rochester.edu/%7Edmw/Mees/Images/M15.RGB.crop.blink.gif


Finding variables in long-time-series data

The precise and accurate ways to identify variables and measure periods are predominantly 
these.

 Periodograms: power spectra derived from specialized forms of the Fourier transform, 
particularly the Lomb-Scargle periodogram (Scargle 1982, VanderPlas 2017).

 Phase-dispersion minimization: light curves folded and phase-shifted to minimize 
dispersion of the brightness at a given phase, relative to a prior or to a smoothed 
version of the light curve (Stellingwerf 1978, Plavchan et al. 2008).  

 Both work better, the better the photometric accuracy and the longer the continuous 
time series.

 It’s pointless to use either one unless the time series spans at least a few periods.

• But that sometimes doesn’t matter, e.g. if all you’re after is the magnitude and 
dispersion of a population of variables, as in the baseline globular-cluster 
experiment.
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https://ui.adsabs.harvard.edu/abs/1982ApJ...263..835S/abstract
https://arxiv.org/abs/1703.09824
https://ui.adsabs.harvard.edu/abs/1978ApJ...224..953S/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJS..175..191P/abstract


Fourier transforms

A few reminders from MTH 281 or its equivalent:

 The Fourier transform of an evenly-spaced infinite time series of data f(t) is the 
amplitude spectrum F(ω):

 If the data f(t) were a sinusoid with (angular) frequency ω0, the transform F(ω) would 
be a pair of delta functions: infinitely narrow spikes at ±ω0. 

 If the time series were to last only for a time T, the amplitude spectrum for a pure 
sinusoid would not be infinitesimally narrow. For example,

 the sinc function, with central peaks at ±ω0, ~2π/T wide (FWHM).
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Discrete Fourier transforms

 In real life, transforms are discrete, as our time-series data are series of averages over 
intervals of time: samples. 

 If the sampling interval is uniform at ∆t for N+1 total samples, then the transform 
becomes

 or, with ∆ω = 2π/N∆t and ωk = k∆ω, 
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Power spectra

 “Periodogram” is another name for power spectrum, apart from an extra factor of the 
inverse of the number of samples:

 To be precise, the periodogram is an estimator of the power spectrum, as the power 
spectrum is a continuous function of the parameters of the star or other emitting region, 
but most of us ignore the distinction. 
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Aliasing

 With discrete sampling, say N+1 
samples at interval ∆t, one cannot take 
seriously a frequency higher than ω0 = 
π/∆t, as power is incorrectly mapped to 
these frequencies. This called aliasing. 

 In the frequency domain instead of the 
time domain: to represent the frequency 
content of a signal that is zero outside 
the range ±ω0, one must sample the 
frequency data at a rate of at least ν0 = 
2(ω0/2π).

 This is known as the Nyquist theorem, 
and the minimum sampling rate is 
known as the Nyquist rate. 

• So the transform of page 5 has no 
aliases.
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Nyquist 
rate

Real Aliases

A power spectrum extended to 
frequencies way too high, to show the 
aliases. From vanderPlas 2017.



Nonuniform sampling and the Lomb-Scargle periodogram

 Sampling intervals in astronomical observations are hardly ever uniform. For a set of 
samples at times tn, and upon writing the classical periodogram as 

Scargle (1982) generalized the expression to

and showed that there are unique forms for A, B, and τ such that the new periodogram 
reduces to the classical one in the limit of uniform sampling interval, and give other 
desirable properties too, like analytically-computable statistics. 
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https://ui.adsabs.harvard.edu/abs/1982ApJ...263..835S/abstract


Lomb-Scargle periodogram (continued)

 It also turns out that this generalized periodogram is identical to what you get by fitting 
a sinusoid to the data at every frequency by χ2 minimization, as was shown by Lomb 
(1976).

 The result is called the Lomb-Scargle periodogram:

and is much easier to calculate than it looks. 

 Its use is now universal for measuring periods from time-series data on objects with 
large duty-cycle variability, such as RR Lyr and Cepheid variable stars. Built into the 
the NStED periodogram tool.
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Terminology

A large duty cycle oscillation:

A small duty cycle oscillation:
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Example 1: NR Lyrae, a perfect RR Lyrae star

Full light curve, and a close up, from Kepler Q2. Kepler gives really high-quality data.
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NR Lyrae (continued)

L-S periodogram, after “prewhitening:” basically filtering out low frequencies.
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NR Lyrae (continued)

Zoom in on fundamental mode. Note square-sinc-function-like sidebands. The pulsation 
period is 16.369 hours.
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Example 2: RR Lyrae, the archetype

Light curve, from Kepler Q2. Note the periodic envelope, classically known as the Blazhko
(1907) effect. 
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https://ui.adsabs.harvard.edu/abs/1907AN....175..325B/abstract


2 4 6
0

1 1015
×

2 1015
×

3 1015
×

Frequency, ω/2π (1/day)

Lo
m

b-
Sc

ar
gl

e 
po

w
er

 (e
le

ct
ro

ns
^2

/se
c^

2)
RR Lyrae (continued)

L-S periodogram, after prewhitening. Power at half-integer “harmonics!”
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RR Lyrae (continued)

Zoom in on fundamental mode. Note lopsided sidebands, which are the power-spectrum 
counterpart of the Blazhko effect. The pulsation period is 13.605 hours.
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RR Lyrae (continued)

“1.5th harmonic:” sidebands present but not the main pulsation. Half-integer features in the 
power spectrum – a.k.a. period doubling – shows the origin of the Blazhko effect in 
nonlinear pulsation (Szabo et al. 2010). No feature like this in NR Lyrae.
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https://ui.adsabs.harvard.edu/abs/2010MNRAS.409.1244S/abstract


How to make a phase-folded light curve

For long time-series observations, it is useful and customary to phase-fold the light curves, 
so that all the events in the series are plotted together according to their phase within the 
period. 

 All programming languages have a built-in function called mod that can be used to map 
time tn into phase φn like so:

 mod takes every δt segment of the time series and shifts it to earlier times by the 
amount δt. The other factors just convert the period to the phase scale, 0 to 2π radians, 
and shifts the scale overall to center it in plots as desired. 
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Example 3: Kepler-6 b

Kepler-6 b is a classic hot Jupiter. The early, Kepler Q1, data are published in the Kepler
special issue (Dunham et al. 2010); this is Q2.
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Kepler-6 b (continued)

Phase folded over δt = 3.234723 days, δφ = -0.3π, phase values divided by 2π before plotting.
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Phase-dispersion minimization

This procedure immediately suggests an automated, model-independent way to fold the 
light curve and determine the best value of the period δt:

 Start with a value for δt. Generate an initial folded light curve. Calculate its mean and 
variance, 

 Break the folded light curve into M bins, each containing m points. Within each bin j, 
calculate the mean and variance sj

2. Sum the variances to create 

 If δt is not the true period, then s2 will be close to σ2 and Θ ~ 1. 

 But as δt approaches the true period, Θ approaches a minimum, with Θ 1.

 So vary δt to find the minimum, or incorporate it all into a root-finding routine.  
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Example 4: minimizing phase dispersion in Kepler-6 b
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Phase-dispersion minimization (continued)

 This means of folding light curves and determining periods was invented by 
Stellingwerf (1978) and has been in standard use ever since.

 A particularly nice version by Plavchan et al. (2008) has been incorporated in the 
NStED periodogram tool. 
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https://ui.adsabs.harvard.edu/abs/1978ApJ...224..953S/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJS..175..191P/abstract
https://exoplanetarchive.ipac.caltech.edu/cgi-bin/Pgram/nph-pgram


Example 5: phase-folded light curve for NR Lyrae

The smooth run of the points and the error-bar ends probably indicates that the tiny 
uncertainties are still overestimated. (See next lesson.)
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Example 6: phase-folded light curve for RR Lyrae

No errorbars plotted, as the large Blazhko effect would make it too confusing.
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