
Today in Astronomy 241:

Two situations in which radiative transfer can be dealt 
with accurately but relatively simply: 

• Expanding stellar atmospheres: the Sobolev 
approximation, escape-probability formalism, and large-
velocity-gradient approximation

• Stellar limb darkening: power-series approximation to 
the source function

• Reading: C&O pp. 264-266; the supplement posted on 
our website; and Mandel & Agol 2002
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Quadratic limb darkening (blue) applied to transit lightcurves of TOI-
2046. Data (pink and green, for different observing nights) from last 
semester’s ASTR 111 class. 
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https://www.pas.rochester.edu/%7Edmw/astr241/radiative_transfer_supplement.pdf
https://ui.adsabs.harvard.edu/abs/2002ApJ...580L.171M/abstract


Solutions to the radiative transfer equation

The goal of radiative transfer in stellar astrophysics is to link the observable 
properties of stars:

• Mass, luminosity, photospheric radius and effective temperature

• Absorption and emission spectrum

• Pulsation spectrum

to the underlying physical properties:

• Element abundances

• Physical structure of atmosphere and interior: density, temperature, 
ionization state as functions of radius

• Turbulent pressure, existence and extent of convection zones, magnetic 
fields and starspots.
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Nigel Sharp, NSF

https://apod.nasa.gov/apod/ap230611.html


Solutions to the radiative transfer equation (continued)

As we know,

where 0 is the boundary of the absorbing medium and the 
angle from the vertical is included in the prescription of the 
integration path. 

• Solution, as we also know:

which depends on the entire path of light propagation, 
rather than just the angle between the path and the vertical. 
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Solutions to the radiative transfer equation (continued)

• This is the beginning of a hard problem, as the source function              is in general a function of       through
and 

• When valid approximations can’t simplify the integral significantly, one normally solves this inverse problem by

• constructs a model of the absorbing medium – density, temperature, composition;

• outfits it with a constitutive relation for opacity (e.g. Kramers);

• integrates                                    often at great computational cost;

• compares with constraints (e.g. observations);

• repeats this sequence of steps until the constraints are satisfied within a desired tolerance. 

• This would be very time and resource intensive for modern stellar models and high-resolution spectroscopic 
observations. 
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Examples of practical, valid approximations in radiative transfer

• For expanding stellar atmospheres, such as are found in red giants and asymptotic-giant-branch stars, the Sobolev 
approximation, the escape-probability formalism, and the large velocity gradient (LVG) approximation. 

• Simplifications which apply in a wide variety of astrophysical situations, not just stars.

• Still too complicated to spend much time on in ASTR 241 but it pays to be familiar with the principles. 

• For limb darkening: power series expansion and fitting of the source function. 

• Universally used in interpretation of eclipsing binaries and exoplanet transits. 
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The Sobolev, escape-probability, and LVG approximations

Sobolev (1963), who was trying to understand atomic spectral lines in expanding giant-star atmospheres, came up with
all these.

1. What if              is independent of          Then it comes out of the integral:  

2. In this case, writing the spectral-line intensities as                                                        it is straightforward to show (see 
the supplement) that the radiation field’s energy density
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https://www.pas.rochester.edu/%7Edmw/astr241/radiative_transfer_supplement.pdf


The Sobolev, escape-probability, and LVG approximations (continued)

3. Under what conditions might this apply? A wide variety, but Sobolev’s favorite was the LVG approximation.

• The idea: if the emission region exhibits total doppler shifts larger than the width δλ of the spectral-line profiles, 
then the region’s opacity is much reduced…

• it will behave almost as though it is optically thin (zero opacity), the only modification being that emitted photons 
have probability β of escaping the region without being absorbed, instead of probability 1 (optically thin) or 0 
(opaque; optically thick). 

• In this case, for a spectral line between states j and i (see the supplement for a derivation),
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Sobolev and LVG
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Polynomial limb darkening

Another useful way to avoid time-consuming integrals is to suppose that the source function Sλ has a simple functional 
form, such as a series of easily integrated factors. 

• Start with

• Extend the integration bounds very deep in the atmosphere, so that all layers of the atmosphere are accounted for:
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Polynomial limb darkening (continued)

• And now suppose that the source function Sλ can be represented by a power series in the vertical optical depth: 

where is the intensity that emerges in the vertical direction.

• Then 

The N = 1 and 2 cases are usually called linear and quadratic limb darkening, respectively. The latter is very widely 
applied in eclipsing-binary and exoplanet-transit studies, and we will use it in this week’s homework.
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Today’s in-class problems

D. Derive this last result. Compare it to equation 9.17 in C&O. 

E. Compare the linear form of this result to that which we get for the gray atmosphere in the Eddington 
approximation. What are the coefficients aλ,n in this case?

F. Plot                                for linear and quadratic limb darkening, as functions of ϑ from 0 to 90°. 
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Hints for the last set of in-class problems

1. (9.17) Just integrate, starting from equations 9.3, 9.8, and 9.9:
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