Today in Astronomy 241: polytropes

* Adiabatic EOS

* The Lane-Emden equation

* Solving the LE equation analytically
* Solving the LE equation numerically

* Reading: C&O pp. 334-340

The first five lines of Homer’s Odyssey

avdpa pot Evvene, podoa, MOAUTPOTIOV, OC LAAA TTOAAQL
nAAQyx0n, €mnet Tpoilng tlepov mtoAieBpov Enepoev:
MoAADV & avBpwrniwv (dev Aotea Kai voov Eyvw,

TOAAQ &” O V' €V movTw nabev dAyea Ov Katd Bupov,
ApVUEVOC NV TE PUXNV KOl VOOTOV ETAlpWV.

Sing, goddess, of that resourceful man, who was driven

far journeys after he had sacked Troy’s sacred citadel.

Many were they whose cities he saw, whose minds he learned of;
many were the pains he suffered in his spirit on the wide sea,
struggling for his own life and the homecoming of his companions.



Adiabatic equation of state

As we have seen, pressure, density, and temperature are related for adiabatic processes by

PVY =constant
or  Pp Y =constant
or PTV/(V_l) = constant
CP _ n+1 1

=1+
Cy n n

where V=

* nis called the order number of the polytrope whose equation of state is one of the above expressions. Usually we
will use P=Kp*¥" K =constant.

* Ideal monoatomic gases have n = 3/2; adiabatic processes in ideal monoatomic gases follow P = K/os/3



The Lane-Emden equation

The equations of hydrostatic equilibrium and mass conservation can be made into an equation reminiscent of the
Poisson equation:
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It is usually best, especially in numerical solutions, to express this in dimensionless form. Define dimensionless density
and radius, D, and §:

M:(Dn(r))” ,0<D, <1 r:E\/(n+1)Kp((:1—n)/n

4nG




The Lane-Emden equation (continued)

and one gets, by substitution,

1 d( _,d(Dp) n _
Sl - (p)! . i
52 df(f de ( n) Lane-Emden equation
g .. dD,
* Boundary conditions: D, (0)=1, Dy, (0) = g (0)=0.

* The LE equation yields analytical solutions for three polytrope orders: n=0, 1, and 5.

* None of these are particularly interesting, physically, though we will solve them in class for practice.



Solving the LE equation numerically

* The physically interesting polytropes begin with

* the monoatomic ideal gas and the nonrelativistic degenerate gas, both of which have n =3/2, and

 the ultrarelativistic degenerate gas, which has n =3,

both of which require numerical solution of LE.

The first thing to do to solve the LE equation is to take the second-order equation apart into two first-order equations,

as the best differential-equation solvers, like the Runge-Kutta method, work only on first-order differential equations.
Define a two-element vector 6, with elements

2 o1
69 =Dp, 6,=¢"6g ,
whereupon we get the dimensionless forms of the hydrostatic equilibrium and mass-conservation equations:
1

5p =
62

5, and & =—€%(6)"



Solving the LE equation numerically (continued)

1
* The boundary conditions on 6 descend directly from those on D: 6 :[0] até =0.

* These are the ingredients of common Runge-Kutta solvers, which take as their inputs the é = 0 values; the maximum
value of £ to explored, at which one expects 65 =0; the number of steps N between start and maximum value; and
the vector of derivatives,

2
5,/¢

~€%(60)"

=
* Most RK solvers return a matrix for which the columns are ¢, 65, and 6; :fz d60/d6, and the rows are the N steps in
the integration between start and maximum.

* The shooting-method aspect of this type of solution is that one doesn’t know the appropriate maximum value a
priori, and to go past 65 =0 yields complex-valued solutions.

* You get to try this in this week’s team homework.



Today’s in-class problems: leftovers from last time (gray = completed)

Assume that the run of density in a staris p(r) zpo(l—r/R).

A. Integrate the equation of mass conservation, thereby obtaining expressions for mass as a function of radius, M,,
and the central density, Pg-

It will be convenient to leave pg in the equations, and to use x = r/R as the independent variable.

B. Then integrate the equation of hydrostatic equilibrium, to get the pressure as a function of radius, and the central
pressure.

C. Then use the ideal gas law to get the temperature as a function of radius, and the central temperature. Note that

5-24x” +28x> ~9x* = (1-x)?(5+10x -9+’

D. Assume that radiative energy transport dominates, and that a Kramers law can be used for the opacity, to obtain
an expression for dT/dr. Evaluate it at r = R/2.
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Today’s in-class problems (continued)

E. Then produce an expression for dT/dr from the result of problem C, similarly evaluated at r = R/2.

Set equal the results from problems D and E, and obtain an expression for the luminosity generated within r = R/2 —

which, because of the strong temperature dependence of energy generation, should be equal to the total
luminosity of the star.



Hints for the last set of in-class problems

Answers, in convenient units:
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