Astronomy 241 problem set #3: solutions
17 February 2024

The integrals in the following all turn out to be analytically tractable (see Mandel & Agol 2002), but I
recommend evaluating them numerically when using them in problem G.

A. A ray of light emerges from a point on the meridian of a star, in an observer’s viewpoint. Take the star to have
radius 1. (That is, use the star’s radius as the unit of distance.) The point lies north of center by a fraction r of
the star’s radius in the observer’s viewpoint, as shown in the diagram below. Show that the ray leaves the

photosphere at angle given by cos@ =1— .

To observer

Side view Observer’s view

The observer is distant, so the lines of sight through the emission point and the star’s center are

parallel. Therefore, from the diagram: € =arcsinr, and cosé = \/ 1-sin26 = \/ 1-¢2 , q.e.d.

B. The star exhibits quadratic limb darkening; its intensity in the vertical direction is 1. (That is, use the vertical
intensity as our unit of intensity.) Show that its flux Fy as viewed by an observer is

= 27rj()11(r) rdr , where

2
I(r)= z ann!(l—r2 )n/z , and where
n=0

2
Z an!=1
n=0

The last relation means that the three a,s are not independent of one another.

To save writing I have omitted the wavelength subscripts, but keep in mind that the measurements are made at
a certain wavelength or relatively narrow range of wavelengths, rather than integrated over all wavelengths.

As we saw on 6 February 2024, the emergent intensity is

N " N
I(O,H)z—jidrv seCHe_TVseCQI(O,V)ZE)anr{} =1(0,V)]; due‘”zoanu” cos" 6,
n= n=|
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whence, as we have reminded ourselves several times, a few integrations by parts gives

N
I(a,,0,6)=1(0,V) z a,n'cos” 6

n=0

From the definition of flux (25 January 2024) and the high opacity of the star - only the front side of
the star, 6 =0— /2, contributing to observed flux - we get

R (an ) = _[02” d(pj(;[/z d&l(an ,0,0)cos€sin 0

The integral over ¢ is trivial. For the other one, note again from the diagram that an apt substitution
is r=sin@, dr=cosfdf, and r=0-1as §=0-7/2:

b =27rJ.011(an,r)rdr , where

N 2
1(a,,0,r)=1(0,V) ann!(l—rz)n/ , q.pd.
n=0

Now note that I(a,,0,0)=1(0,V), so, trivially,

N
Z an!'=1 , qed.
n=0

Since the star is specified to exhibit quadratic limb darkening, N = 2, so this last result implies
) Zl—blo —2L12.

C. A planet with radius p <1 has moved so that its shadow lies completely A

within the star’s disk, at projected coordinates x, z from the center of the star,
in the observer’s view. Show that the star’s flux is now

Y

F(”wpfr)=Fo(ﬂn)—”}721(ﬂn,0,r) , r=Nx?+2% <1-p. '

If the shadow lies completely within the star’s disk, it can be no further

from the center than r =+vx? +z> =1 p. If the planet is opaque and its

shadow much smaller than the star, then the stellar intensity varies
little over the shadow’s position and can be taken to be simply the intensity at the shadow’s center.

The stellar flux absorbed by the planet is therefore F,p, =zp?I(a,,0,7), and the flux which reaches
the observer is F(a,,p,r)=F(a,)-zp*I(a,,0,r), qe.d.

>
>

D. In the short time it took to solve that problem, its orbital motion has taken the
planet to the limb of the star, part of its shadow past the limb, at position x',z',

a distance r'=~x"*+z"% from the direction toward the star’s center. Show z
the area of shadow remaining within the stellar disk s i N
Ay :p2 arccos([r’—l]/p), that the area of the annulus of the stellar disk X
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within which it liesis A, = 7{1 —(r'- p)2 } , and that the flux from the star is now approximately

P’(an,p,x’,z')zl-"o—%{pzarccos[r’ 1}—(1”—1) pz—(r’—l)z}jl, I(a,,r)rdr
1—(7'—p) p r-p

1-p<r'<l+p.

Zoom in on the planet in the diagram above:

Since the planet is much smaller than the star, the edge of the star can be considered to be a straight
line perpendicular to the line between the centers of star and shadow. This permits the part of the
shadow outside the star to be decomposed into a circular sector - in blue, above - and two right
triangles (green and red). The triangles’ common side has length r'—1 and they both have

hypoteneuse length p, so their adjacent angles are arccos([r’ -1] / p). This makes the area of the sector

7p* [(;z—arccos([r’—l]/p))/ﬂ] and the total area of the two triangles (r'—1) p? —(r’—1)2 Thus
Ay = 7TP2 _;;p2 [(ﬂ—arccos([r’—l]/p))/ﬁJ ~(r'-1) P2 —(r'—1)2

= p? arccos([r' —1]/;7)_(7' ~1)/p? —(r’—l)z

The radius of the inner edge of the annulus is 1—[p—(r’—1):| =r'—p. Neglecting the small shadow,

the area of the annulusis A, =7— ﬁ(r' - p)z , and it produces flux given by

1
F (a :2J I(a,,r)rdr
a () ”r,_p(n )
Again because the shadow is small, we can take the intensity to be uniform across A, to first

approximation, so the shadow blocks a fraction A, / A, of the annulus’ flux. The total flux received

by the observer is therefore
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F'(ay,p,x',2")=F (an)—A—pFu (a,)

=F0(an)—ﬁ{p2arccos[r j_(w_n p2—(r’—l)z}j;_pl(an,r)rdr , qed.

You will hopefully notice that this is the same as the small-planet-transit result by Mandel & Agol
(2002; equation 8; note that they refer to our ' as z).

E. In the literature, one often sees limb darkening described by

Iﬂ. (O,S) N n
2L =1+>0b 1-cos@
1/1 (O,V) ngl A,n( )

Show that this formula is the same as that derived in class for quadratic limb darkening, and give the equations
relating the ay ,, in our formulation with the by ,, in this one.

(One also often sees the definition p=cos@ used in such articles; this is common enough that lots of authors
just use p in place of cos@ from the beginning without ever reminding the reader of the definition.)

1(0,6) X N "
=) aynlcos" =1+ > b, ,(1-cosB)
1(0,V) E, " El "

and with N =2,
1-ay —2ay +ay cos@+2a, c0520=1+b1 +by —by cos@—2b, cos &+ b, cos? 0

For this equality to hold at all values of 8, the coefficients of the powers of cos@ have to be equal
separately:

aq :_b1_2b2 P
a :b2/2

Note that this also makes 1-a; —2a, =1+b; +b,.

F. An exoplanet orbits a star with zero eccentricity, orbital radius a, and axis inclination i with respect to the line
of sight. The system rotation/revolution axis lies along z in projection. The planet’s orbital period is P. Derive

expressions for z(t) and x(t) which apply as the planet transits the star.

Here are three views of planet and star at an arbitrary nontransiting time, starting with the orbital
plane in x-y, and an edge-on view with the observer’s line of sight along y. The observer is located at
y—>—o; t=0 at mid-transit, when the centers of planet and star align. Keep in mind that we can’t

resolve the dimensions in observations; the whole scene appears starlike in transit observations.
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Uniform circular motion (e.g. ASTR 111, Lecture 9) implies that in the system’s equatorial plane, the

position would be x(t)=asinwt = asin(27t/P)=asing, and similarly y=acosp, where ¢ =gp(t) is

the orbital phase in radians. If the observer were to view the system edge on, and if the planet and
star were aligned at t =@ =0, it would appear in the coordinate system above as

x(t)=asin(o(t) . y(D)=a(o(t)) . =()=0
If the orbital axis were inclined with respect to the line of sight by angle 7, then this changes to

x(t):asin(go(t)) , y(t):asinicos((p(t)) , z(t):acosicos((o(t))

zZ' 2!

Because the transit duration is a small fraction of the orbital period, z is essentially constant in the fit
of the formulas to the transit light curve. Note that we can’t tell whether the orbital axis is inclined

toward, or away from, the observer, since cos (—x) =cos (x)

G. (Computer problem) Here is a time sequence of Kepler data on a main-sequence star called Kepler-6, taken
during the mission’s first 90-day observing campaign. Kepler-6 has a planet, Kepler-6 b, which transited the
star 27 times during this campaign. These data have been corrected for a few imperfections and are flux-
normalized.
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Fit the limb-darkened transit light curve model you have developed in problems A-D and F above, to these data,
employing the function mod () to produce a phase-folded light curve (e.g. ASTR 111, 7 December 2023); that
is, with the time coordinate converted to

go(t,tO,P):%”mod(t—to,P) ,

where ty is adjusted to place ¢ =0 at mid transit. Use as fitting parameters the orbital period P, the time
offset ty, the two independent values of the quadratic limb-darkening coefficients (LDCs) a,,, the planet’s

radius p, and its orbital radius and inclination a and i to produce the best fit possible. Report the parameters of
the optimal fit, estimate their uncertainties, plot the best-fitting model on top of the data, and compare the LDCs
to those of the Sun (ASTR 241, 8 February 2024, page 12).

One good way to optimize is to minimize the reduced chi-squared for the model and data, »%. With
F, Feepler-6, and AFepler 45 the model, flux data, and flux-uncertainty data respectively, this is given by

2
AR =

2
1 A]il FKepler-G, i~ F Ji
N-m-1 j=0 AFKepler—G,j

Adjustment of the m = 7 model parameters to reach a minimum value produces the best fit to the N data points.
If the minimum value is within a factor of a few of y% =1, then an increment or decrement of a parameter

which increases y3 by 1 is a good estimate of the uncertainty in that parameter.

Result: P =3.23474+0.00005 days, fy=170.006+0.0003 days (since the beginning of the mission),
1 =213+0.18, 2a, =-1.06+0.14, a=5817+0.015, i=83.77°+0.04°, p=0.096+0.001;, 42 =4.3.1
restricted the fit to the N =229 points with folded phase |(0| <0.25 radians. The uncertainties are

increments in the model parameters that raise 33 by 1.

At the end I append the Mathcad code I used for the calculations.

Note that the LDCs are significantly different from the Sun’s, for which we get
a; =1.057, 2a, =-0.349 at 1 =600 nm (class handout, 8 February 2024, page 13). These very same

Kepler data were presented in one of the mission’s early papers: Dunham+2010. Dunham et al. don’t
say what LDCs or which formulas they used to fit the light curve; limb darkening wasn’t the point of
their paper. They do, however, present spectra demonstrating that Kepler-6 has significantly larger
metallicity than the Sun, so it’s not surprising that our Kepler-6 LDCs are significantly different from
the Sun’s.

The LDCs we obtain are also a bit unphysical, which John Southworth has pointed out in modelling
of these data (Southworth 2011). I'll let that slide til there are LDC measurements over a broader
range of wavelengths.
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Note that there is a symmetrical pair of small kinks in the model curve, too small to keep the curve
from fitting well, caused by p not really being much smaller than 1. Another Mandel & Agol result -
the one I use for fitting transit curves - is accurate for larger planets, but is harder to derive. Those
who are interested can find it in the Mathcad code at the end. Its use gives the kink-free plot below,
resulting in  P=3.23473+0.00005 days, t;=170.007+0.0007 days, a4 =2.161£0.071,

2a, =-1.082+0.057, a=5.812+0.037, i=83.76°+0.09°, p=0.0956+0.0008; 4z =3.9. Practically
the same uncertainties, and not that much better than the small-planet approximation, for these data.

1.005 T T T T T

0.995

Normalized flux

0.99

0.985
-0.2 -0.1 0 0.1 0.2

Orbital phase, radians
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Limb darkening of Kepler-6

For ASTR 241 Spring 2024 Homework #3, problems A-D and F-G.

Light curve for 27 transits of Kepler-6 b, from the first 90-day Kepler campaign ("quarter 1") of the main Kepler mission. See Dunhamet al. 2010,
https://ui.adsabs.harvard.edu/abs/2010Ap)...713L.136D/abstract.

Other files used: kepler_6b_ltcrv.csv, as downloaded from the Kepler archive.

Last modified 13 December 2024 DMW for consistency with models presentedin ASTR 111 Fall 2024

Constants and formulas:

me Reference:C:\Program Files (x86)\Mathcad\Mathcad 14\template\Dan's constants and formulas.xmcd

To skip the bits about the preparation of the phase-folded light curve, go directly to section lil.

l. Read the data

The .csv file contains time in days, flux and its noise in DN secl, extracted from the Q1 FITS data available on MAST, with rows that are all NaNs
pruned out.

M = READFILE("kepler_6b_|tcrv.csv" , "delimited") 3= Iast(M<o>) j=0.1

Take M apart into vectors with recognizable labels:

g <M<o>) Y AF = M2 0 (M<o>)

j M ql = 0

Henceforth the units of time are left in days, and those of flux will be normalized in the next step.

Il. De-trend -- correct baseline drift in -- the data, and make a phase-folded normalized light curve

See at right - or the end, if this is viewed in pdf -- for the script which does the baseline drift correction and normalization.

Full Q1 time series, with and without baseline correction
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Phase folding should, in the best case, be done below in the same stroke as all the other fitting, as it is below. This is a just quick look at the
region around the transit in the folded light curve, introducing the phase function with a trap to ensure centering of zero phase:

47



P .= 3.234723 tg = 170.006 end (=T

Lp(P,t,tO) = if(z—ﬂ-mod(t—to, P) > Tr,zTﬂ-mod(t—to, P) —ZN,ZTﬂ-mod(t—to, P))
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Record a normalized light curve for class use.

M = s M2 = As PRNPRECISION := 6 WRITEPRN("kepler-6_folded.prn") := M"

lll. Fit a transit curve to the data; determine the star's quadratic limb darkening coefficients (LDCs)

Enable only one of these expressions for the star's intensity normalized to the vertical (problems A-B):

1
B as in C&O chapter 9, and in class on 6 February 2024, except that 3
2 2 - —
I(a,B,r) :zl—a—B+a-(1—r ) +B'(1—r ) =2a, here. a=a; as usual.
N
1 1 2
2 2 as frequently in the literature, and in problem E

5.0 = 1rai- (o) Jrpla-(1-)

If the small planet's shadow lies entirely within the stellar disk in the observer's viewpoint (problem C) - that is, if

—then the star's normalized flux is

1 -1
2
sin(a:Barap) ::1_7Tp '|(04=B=r)' ZNJ I(OL,B,F)-F dr
0
If the edge of the star lies within the planet's shadow -- that is, if l-p<r<1+p

—then the normalized stellar flux is given by the following formulas, of which only one should be enabled at any given time.



First the simpler approximation, as in Problem D (compare Mandel & Agol 2002, equation 8):

el o181 1;)2%2'“05(:1)01)' |02(r1)2}-U1 (e, B, 1) dr'J.£27r.J01 (o, B.r)-r dr,]_l

r-p

and then a more accurate form, a la Mandel & Agol 2002:

' ue 2'|(OL B,1- ) ! -
Sedge(o‘a Ba r, p) = 1_21TJ I(OL, B,r')'r' dr'- 1p > P . ZT(J\ I(OL, B’ rl)_rl dr'
- ZN-J (o, B,r)-r' dr °
1

IF-ed together:

S(a, B,r,p) = if[r >1+p,1, if[(r <1+p Alr> 1—p),sedge(a, B,r,p), if(r <1-p,S, (o, B,r,p),if(r<p-1, 1,—999))]]
Coordinates for orbital motion (problem F). Here and in the following, 8 is used for axis-line of sight angle instead of i.

x(a,e, P,t,to) = a-sin(0) sin(up(P,t,to))

z(a ,0,P,t, to) = a~cos(6)-COS(LP(Pa t, to))

rfa,0,P,t,tq) = _/x(a,0,P,t,tn) +2z(a,0,P, t,t
( o) =X o)+ o)’

IV. Fitting these formulas to the data

For initial guesses one may use the LDCs for the Sun at A = 600 nm. Angular measures are left in radians.



3.234732
170.006711
2.161095
= -1.081821 m :
5.812695
83.758753-deg
0.095598

Il
~

Number of variables
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Since the out-of-transit baseline was fit accurately above, we can trim the phase range for minimizing XZR closely around the transit; see the
previous plot for guidance.

{ 80 j ° d 0.25
= end = 0.
stop Iast(M<O>)

W,(Patho" B,a,0, p) = StZOE: if|:up|:P,(M<o>)j,toJ > —end /\(p|:P, (M<O>)j,toJ < end,[(M<1>)j—S|:0L, S r|:a,9, P, (M<0>)j,to},pﬂ2
j=go

stop

DOF := Z if[tp|:P, (M<O>)j, tOJ > —end A Lp|:P, (M<O>)j , to} <end,1, o} —m-1

j=¢go

X(P,to,oc,ﬁ,a,e,p) :=DLOF-Var(P,tO,0L,B,a,9,p)



Normalized flux

Now find the x2 minimum precisely. TOL
Given
O = X(P,tO;OL: Baa:eap)
PI
PI
tn
0
tO'
1 a‘
a
B | = Minerr(P,tO,a,B,a,G,p) B
aI
al
el
el
deg
pl
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3.234715
170.006986
2.153419
—-1.088771
5.793657
83.679253
0.095807

X(P' oty o, 8,2, 60, p) = 391



Calculate uncertainties roughly by using Find (rather than Minerr) to calculate the variable differences which increase XZR to x2R+1. Runs much
faster if done one at a time rather than using one Solve block.

AP ~0.000049

Aty —0.000692

Ao —0.072067

AB | =] —0.056692 Guesses. Originals are all zero; usually an iteration appears here.
Aa —0.036811

AO 0.001611

Ap 0.00076

Given

1=x(P+AP.tg.a,B,2,6,p) ~x(P.tg. ., 8,2, 6, p)

AP := Find(AP)

Given

1= X(P,to,a, B,a,@,p—i—Ap)—X(P,to,a,B,a,e,p)
Ap, = Find(Ap)
Given

1= X(P,to,a,B,a—i—Aa,e,p)—X(P,to,a,B,a,G,p)
Aa = Find(Aa)
Given

1=x(P.tg, . B,a,0+A6,p) ~X(P.tg.x, 3,a.6.,p)

A = Find(A6)



Given

1= X(P,tO,OH-AOL,B,a,e,p)—X(P,tO,OL,B,a,e,p>

Aq = Find(AOL)
Given
1=xX(P.tg., B+AB,2,6,p)-X(P.tg. . 8,2,6,p)
AB,:= Find(Ap)
Given For reasons unknown, it takes a very long runtime to Find
1= X(P tg+Aty, 0, 3,2, 0 p) _ X(P tg,, B,a,0 p) the uncertainty in t; when the formula derived in Problem
D (Mandel & Agol 2002 equation 8) is used, but not when
. -4 .
Aty = Flnd(Atl) Aty = -7.022x 10 the more accurate form is used.
Grand total:
P | AP|
3.23473 0.00005
p | Ap|
0.0956 0.00076
a |Aal
5.81269 0.03701
0 | A6
XZ = X(Pl 5 to' ) OLI ) B' ) al ) 6' ) pl) = | 83.75875 = | 0.09284
deg deg
2.16109 0.07247
a |AOL|
—-1.08182 0.057
B |Ag|
3.90976 4.90976

X2 X2 +1



Plot the final result:

Z := 500 i=0.22+1
(i-2) o () o , , 2 2
P, = end- - Xy =2 -sm(e)sm(tpm) 2 =2 -cos(@)-cos(cpm> Mm. = (Xm.) + (Zm.)
| | | | | | | |
1.005 T T T T T
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Problem D result, smooth when

0.995 more accurate formis used.
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3

i 0 Baseline drift correction, called detrending in the
for je0. Kepler literature
if Fj < 69569

dipsj <« j
i< i+1

m<«— 0

buff < 0

ibuff < 0

for i€0.. Iast(dips) Find flux minima.

buff «— buff + dips;

ibuff < ibuff + 1

if (i < Iast(dips)) A (dipsi+1 > dipsj + 1)

buff

ibuff

Mminsy, <—

m«—m+1
buff < 0
ibuff«< 0

minsy <— otherwise

ibuff

midg<« 0

Find midpoints in light curve
between minima - thus making it
MIiNSimins + minsimins+1) } impossible to look for secondary

for iminse0.. Iast(mins) -1

Midiminst1 < trunc|: 5 eclipse, but that's OK.

Midiast(mins)+1 < J



fitpts < 9

npoly < 1
Take a ten-point range on either

for iminse0.. Iast(mins) side of each minimum

for ifitrange € 0.. fitpts

fitrangeifitrange <~ MiNsimins — 15 + ifitrange
fitrangeifitrange+1-+fitpts <~ MiNSimins + 6 + ifitrange
for ifitrange € 0.. 2fitpts + 1

fr< tru nC(ﬁtrangEiﬁtrange)

tfitifitrange < tfr

Ffitifitrange < Ffr

VS regress(tfit, Ffit, npoly)
Fit a line to those points, and

for istar € midimins .. Midimi .
Imins imins+1 inter/extra-polate for the reset of

staristar < interp(vs , tfit, Ffit, tistar) the range around each minimum.
for je0..)
Fi Normalize.
Sj«
star;j
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