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1. Einstein A and B coefficients  

Consider two states,  and u  , of an atom or molecule for which transitions between these 
states which are induced by collisions with a species with number density n0  −3(in cm )  
are much more frequent than by any other process. Take state u to be the higher-energy 
one. In a steady state, transitions between the two energy levels must have the same rate:

0 0u u un n n nγ γ=
  

, where the ns are number densities of the particles and the sγ  are 

collisional transition rate coefficients −3 1(in cm  sec ) , in general functions of temperature. 
So far this condition is detailed balance in steady state. A priori we know nothing about 
any of these quantities. If, however, the molecular region were also in thermal 
equilibrium at temperature T, the densities in states  would have to be related by 
the Maxwell-Boltzmann distribution, ( ) ( )expu u un n g g E kT= −∆

  

, where the gs are 
the degeneracies of the states and uE∆



 their energy difference. In this case,  

 ( ) ( )exp exp ,u u u u u ug g E kT g h kTγ γ γ ν= −∆ = −
    

 (1) 

where uν ν=


 is the frequency of light that would be emitted in a downward radiative 
transition between the states. This has to be true at all temperatures, and because it is 
independent of densities, it has to be true at all densities as well – whether or not the 
molecular region is actually in thermal equilibrium. This condition is called detailed 
balance in thermal equilibrium. 

Now suppose that the same species lived in a place in which radiative transitions were 
more frequent than any other process. In this case, steady-state detailed balance is 
expressed by 

 ,u u u u un A n B U n B Uν νδν δν+ =
   

  (2) 

 and u 
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where uA


 is the rate in 1sec−  at which state u spontaneously decays into state   by 

emitting a photon with energy hν . The Bs are the rate coefficients in 3 1cm sec−  at which 
photons can induce transitions between the two states. Uνδν  is the local energy density 

of light −3(in erg cm ) , travelling in any direction, which is capable of inducing such 
transitions: that is, lying within a bandwidth δν  around the center frequency ν  1. If in 
addition to steady state, the atoms or molecules and the photons are also in thermal 
equilibrium, we can invoke the Maxwell-Boltzmann distribution and the Planck 
blackbody function, 

 
( ) ( ) ( )

3

3
4

exp and

1 8 1, ,
exp 1 exp 1

uu gn h
n g kT

ChU d d B T
c h kT h kTc

ν
ν ν

π

ν

π ν δνδν ν ν
ν ν

 = − 
 

′ ′= Ω = ≡
− −∫ ∫

    (3) 

in the detailed-balance expression (2), to obtain 

 1 ,  or
1 1

h kT
h kT

u u u u uh kT h kT
eg A e g B C g B C

e e

ν
ν

ν νν ν

−
− + =

− −
   

  (4) 

 ( )1 .h kT h kT
u u u u ug A e g B C e g B Cν ν

ν ν
− −− + =

   

  (5) 

For this expression to work at arbitrary temperature, the terms with and without the 
exponential factor have to balance separately: 

 

3

3
8 and0

.

h kT h kT
u u uu u u u

u u u
u u u

hA B C Bg A e g B C e
cg A g B C g B g B

ν ν
νν

ν

π ν δν− − = =− + =
⇒

=
=

   

  

  

 (6) 

Because these two relations among A and the Bs are independent of temperature and 
density, they must apply universally, under all conditions of temperature and density, 
whether or not the system is in thermal equilibrium. You are already familiar with uA



, 
the spontaneous emission rate;  and u uB B

 

 are respectively the rate coefficients for 

 

1 The bandwidth δν  is determined by the properties of the absorbing species and the 
medium, as described below. In most discussions of the Einstein coefficients it is 
omitted, as it frequently cancels out of some subsequent equations. 



3 

© 2024 University of Rochester  All rights reserved 

stimulated emission and stimulated absorption. Collectively they are called the Einstein 
A and B coefficients 2.  

With A and the Bs we can express two terms of classical radiative transfer in quantum 
language: our usual emission coefficient ,ν  which is the power per unit volume emitted 

isotropically at frequency ν  by the medium (i.e. has units 1 3erg sec  cm− − ): 

 , ;
4u u u
h A nν
ν
π

=
 

  (7) 

and the absorption coefficient ,νκ  which is the reciprocal of the mean free path of 

photons of frequency ν  in the medium (i.e. has units 1cm− , unlike the form in Carroll & 
Ostlie which is the mass absorption coefficient): 

 ( ), .u u u u
h B n B n
cν
νκ = −

   

  (8) 

As written, these coefficients represent the total emission and absorption, integrated over 
frequency. On a finer frequency scale, both emission and absorption are described by a 
profile function, which accounts for aspects of the environment which affect the range of 
frequencies emitted or absorbed: for example, Doppler shifts from thermal, turbulent, or 
systematic fluid motion.  

The ratio of these two coefficients is the source function Sν :  

 
3,

, 2
,

2 1 ,
4 1

u u u
u

uu u u u

u

A nc hS n gB n B n c
n g

ν
ν

ν

νδν δν
κ π

≡ = =
− −










   



  (9) 

in which equation (6) was used in the last step. In thermal equilibrium (equation (3)), Sν  
is the same as the Planck function ( ),B Tν ν ; therefore, like the Planck function, it 
expresses the net power per unit area, bandwidth, and solid angle emitted by the 
medium. The δν  factor is the range of frequencies covered when the source function is 
integrated along with a narrow spectral-line profile centered on uν ν=



.  

 

2 A. Einstein 1916, DeutPhysGesell 18, 318. Highly recommended reading. Charlie 
Townes often said that this paper was a big influence in his invention of the maser and 
laser.  

https://ui.adsabs.harvard.edu/abs/1916DPhyG..18..318E/abstract
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The A and B coefficients provide a convenient way to include photon absorption and 
stimulated emission into the expression for nonequilibrium population ratios of 
molecular states under collisional excitation: the old expression 

 0 0j ji j ji i ij i ij
i i j i i j

n n n A n n n Aγ γ
< >

+ = +∑ ∑ ∑ ∑   

becomes 

 ( ) ( )0 0 .j ji ji j ji i ij ij i ij
i i j i i j

n n U B n A n n U B n Aν νγ δν γ δν
< >

+ + = + +∑ ∑ ∑ ∑  (10) 

2. The escape probability formalism 

Equation (10) can be rearranged in a more useful form by working on the energy density 
factor Uνδν . To wit 3,4,5: 

Neglecting free-free scattering, the intensity per unit bandwidth ( )ˆIν s  of light at 

frequency ν  – which has units 1 2 1 1erg sec  cm  Hz  ster− − − −  – travelling along unit vector 
ŝ , is described by the equation of radiative transfer: 

 ( ) ( ) ( )
ˆ

ˆ ˆ ,
dI

I S
d
ν

ν ν
ντ

= −
s

s s    (11) 

where the Sν  is the source function; and ντ  is the (dimensionless) optical depth,  

 ( ) ( )
s

dsν ντ κ
−∞

′ ′= ∫s s   (12) 

 

3 V. Ossenkopf 1997, NewAst 2, 365, and the following two references, upon which this 
discussion is based.  

4 T. de Jong, S.-I. Chu, & A. Dalgarno 1975, ApJ 199, 69. 
5 N.Z. Scoville & P.M. Solomon 1974, ApJL 187, L67.  

https://ui.adsabs.harvard.edu/abs/1997NewA....2..365O/abstract
https://ui.adsabs.harvard.edu/abs/1975ApJ...199...69D/abstract
https://ui.adsabs.harvard.edu/abs/1974ApJ...187L..67S/abstract
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which characterizes the decrease or increase of intensity along the line of propagation .s  
Suppose that spectral line emission and absorption is characterized by a narrow ∆ ( )ν ν
profile 6, so that  

 ( ) ( ) ( )0ˆ ˆ ˆ, , , .S S dν ϕ ν ν ϕ ν δν
∞

−∞

′ ′ ′= =∫s s s   (13) 

The solution to equation (11) is 

 ( ) ( ) ( )
0

0 .I I e d S e
ν

ν ν ν

τ
τ τ τ

ν ν ν ντ ′− −′ ′= + ∫s s  (14) 

where now the terms depend on the entire path of light propagation, rather than just the 
local direction as in equations (11)-(13).  

This would be the beginning of a hard problem, as the source function is in general a 
function of ντ ′  through ′s  and ( )νκ ′s  7. Let’s assume, however, that it is independent of 

;ντ ′  then it comes out of the integral, we can drop reference to dependence upon ′s , and 
we get 

 ( ) ( ) ( )( )0 0 1 .I I e S eν ντ τ
ν ν ν

− −= + −s   (15) 

The bold or naïve step of assuming that Sν  can come out of the integral is called the 
Sobolev approximation 8. In these terms we can write the energy density Uνδν  as 

 

6 We need not specify the profile, but if a concrete example helps, use a Gaussian, 
( ) [ ]( )2ˆ, exp ,ϕ ν ν ν δν π′ ′= − −s  with δν   the line-center frequency uν ν=



. As 

written, its integral over frequency is δν .  
7 When the valid approximations can’t simplify this expression significantly, we normally 

construct a model for the absorbing/emitting medium; return to equation (17); 
integrate it numerically, at great computational cost; and iterate by changing the model 
until constraints such as observations are satisfied.  

8 V.V. Sobolev 1963, A treatise on radiative transfer (Princeton: Van Nostrand). Some refer 
to this step as the escape-probability approximation. 
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( )

( ) ( ) ( ) ( )( )
4

4 4

1

0 0
1 ,

U d d I
c

I S
d d e d d e

c c
ν ν

ν ν
π

ν ντ τ

π π

δν ν ϕ ν

ν ϕ ν ν ϕ ν′ ′

∞

−∞
∞ ∞

− −

−∞ −∞

 
′ ′ = Ω

 
 

′ ′ ′ ′= Ω + Ω −

∫ ∫

∫ ∫ ∫ ∫
 

or 
( ) ( ) ( )4 0 4 0

1 ,
I S

U
c c
ν ν

ν
π π

β β= + −   (16) 

where ( )
4 4

d d e ντ

π

νβ ϕ ν
π δν

′
∞

−

−∞

′Ω ′≡ ∫ ∫  (17) 

is called the escape probability. As can be seen from its form, it gives the probability that 
a photon emitted within the medium makes to the surface and escapes, maybe to the 
observer: if 1β = , then ( )4 0U I cν νπ= , as if the medium is transparent; while if 0β = , 

then ( )4 0U S cν νπ= , which in thermal equilibrium reduces to the energy density per 
unit bandwidth in blackbody radiation, as in equation (3), and as it should.   

The escape probability is much easier to calculate than the integral in equation (14). 

3. The large velocity gradient approximation 

A surprisingly large variety of problems yield to the Sobolev approximation 9. One 
common situation where it applies is a medium with a monotonic large velocity gradient 
(LVG). This is what Sobolev had in mind when he invented the escape-probability 
formalism, in expanding, spherical atmospheres of giant stars. It also describes cooling 
behind interstellar shocks, as there is a large velocity change between the jump and the 
end state of post-shock gas cooling.  

Consider a horizontal plane-parallel layer, thickness z, with a large vertical flow-velocity 
gradient, and calculate the escape probability for light emitted at an angle θ  from normal 
(Figure 1). By large, we mean in comparison to the thermal speed, 3 ,tv kT m=  where 
m is the molecular mass. Along a path s  at angle θ  from the vertical, the flow velocity is 
less than the vertical by the factor cosθ . An inclined path through the layer is longer than 
the vertical path to the same level by a factor of 1 cosθ . So the velocity gradient along 
this path is smaller than that in the vertical direction:  

 

9 See D.A. Neufeld & G.J. Melnick 1991, ApJ 368, 215, for uses of the escape probability 
formalism beyond the LVG approximation.  

https://ui.adsabs.harvard.edu/abs/1991ApJ...368..215N/abstract


7 

© 2024 University of Rochester  All rights reserved 

 2cos .sdv dv
ds dz

θ=   (18) 

 

Figure 1: geometry of spectral-line emission and absorption in a plane-
parallel layer (left) with a large velocity gradient (depicted at right).  

At a point a distance s  further down the path, the medium’s absorption profile is Doppler 
shifted redward by a frequency 

 ∆
∆ = = 2 1cos .sv dv s

c c dz
ν ν ν θ  (19) 

Instead of facing absorption centered at frequency ν , light will be absorbed at frequencies 
centered on ν ν−∆ . Suppose the frequency dependence of line absorption is  

 ( ), .uν νκ κ ϕ ν ν′ ′ ′= −


  (20) 

The optical depth of the medium between the starting point and the surface becomes 

 
cos

2
,

0

1cos .
z

u
dvds s

c dz

θ

ν ντ κ ϕ ν ν ν θ′
 ′ ′ ′= − + 
 ∫ 

  (21) 

If ν∆  is larger than ν ν′ − , then the value of ϕ  is very small, so a large dv dz  reduces the 
optical depth toward the observer from the starting point; only the region close to the 
starting point contributes significantly to the optical depth. This simplifies the integrals 
–the upper bounds can be extended to infinity – and also makes the Sobolev 
approximation a good one: the source function and absorption coefficient can be taken to 
vary negligibly within this region, and can therefore come out of the integrals in 
equations (14) and (21).   

To evaluate the optical depth in equation (21), substitute variables as follows: 

θ

z

v

s

coss zv v
dv s
ds

θ=

= coss z θ=

0
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1

2
1 1

2
1

1 1

1cos

1cos

 as 0

dv s
c dz

dvd ds
c dz

s

ν ν ν

ν ν ν θ

ν ν θ

ν ν

′= − +

′ ′= − +

′ ′=

′ ′= − →∞ = →∞

  (22) 

to get ( ) ( ) ( )
∞ ∞

− −

′ ′ ′ ′= ≡∫ ∫

1 1

,
1 1 1 1 12 2

1 1 .
cos cos

uc
d t d

dv dz
ν

ν
ν ν

κ
τ ν ν ϕ ν ν ϕ ν

ν θ θ
  (23) 

This is ready to put in the expression for escape probability, equation (17). Use again the 
first substitution from equation (22): 

 ( ) ( ) ( ) ( )11
1

4 4
.

4 4u
dd d de eν ντ ν ν τ ν

π π

ννβ ϕ ν ν ϕ ν
π δν π δν

′
∞ −∞

′− − −

−∞ ∞

′Ω Ω′= − =∫ ∫ ∫ ∫

  (24) 

Recall the way the line profile is normalized, equation (13), along with the fundamental 
theorem of calculus, and substitute 

 

( )

( )
1

1 1

1 1

0  as 

x d

dx d
x x

ν

ν ϕ ν

ϕ ν ν
δν

∞

−

′ ′=

= −

= → = ∞→ −∞

∫

  (25) 

to produce 

 2
0 0 0

1 sin exp .
4 cosu

txd d dx
π π δν

β φ θ θ
πδν θ

2
 = − 
 ∫ ∫ ∫

 (26) 

Simplify by doing the (trivial) azimuthal integral, and substituting  

 
cos , sin ,
1 1 as 0 :

d dµ θ µ θ θ
µ θ π
= = −
= → − = →

 (27) 

 

( )2

1

2
1 0

1 12 2

2
1 10

1 exp
2

1 1exp 1 .
2 2

u

t

txd dx

txd d e
t t

δν

δν
δν µ

β µ
δν µ

µ µµ µ
δν δνµ

−

−

− −

 
= − 

 

  
= − − = −  

   

∫ ∫

∫ ∫



 (28) 
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Now define 

 

3
,

3

3

3

8

,
8

u uu
u u

uu
u

c g nc Ac ht n
dv dz dv dz c gh

g fc A n f
gdv dz

νκ δν δν ντ δν
ν ν π ν δν

πν

 
≡ = = − 

 
 

= − 
 













 (29) 

where n is the number density of the absorbing species and the fs are the population 
fractions in the states indicated, and obtain 10 

  
( )

( )−

− −
= ∫







21

2
1

1 exp1 .
2

u
u

u
d

τ µ
β µ

τ µ
 (30) 

There are two choices forward from here. The first and most common 4,5 is to assume both 
factors 2µ  in the integrand to be the values of 2 2cosµ θ=  averaged over all solid angles, 

as if applying this averaging process in equation (18). In this case, 2 1 3µ = , and   

 ( )1 exp 3
.

3
u

u
u

τ
β

τ
− −

= 





  (31) 

This satisfies the limits on 
uβ  at the extremes of uτ



:  

 
0

lim 1,  lim 0,
u u

u u
τ τ

β β
→ →∞

= =
 

 

   

as expected. The other choice is to work the integrals out; that is, average over direction 
now, not earlier in the calculation, which is somewhat more defensible. The first integral 
includes the average of 2µ over solid angle, demonstrating that it is 1 3 ; I looked the 
second one up in Wolfram Alpha: 

 

10 At this point, the factors of δν  have cancelled out. This is an example of why many 
leave them out of the whole derivation for simplicity, and don’t worry about the 
dimensions before the final result.  
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( )

2 2 1
3

2
1

1 erf
3 6 3 3

1 1 21 2 .
3 3 3 3

u u

uu u

u u
u

u u

u

u u u

e e

ee e

τ µ τ µ

ττ τ

πτ τµ µβ
τ τ µ

τ
τ τ τ

− −

−
−− −

  
 = − − −      

  − −
= − − = 

  

 



 







 



  

  (32) 

Again we examine the limits, to find 

 
0

lim 1, lim 0,
u u

u u
τ τ

β β
→ →∞

= =
 

 

   

also as expected. So it matters at which point in the calculation one integrates over the 
angles. But not by very much; the two functions differ by about 10% at most and usually 
by much less than 1% (Figure 5). One is no easier to calculate than the other. We will use 
equation (31), for ease of comparison to earlier work, but note that equation (32) is more 
nearly correct. 

That the escape probability is “contained” within 2cos 1 3θ =  ( 33 )θ = °  has observational 
consequences: it means that opaque spectral lines from a plane-parallel LVG layer are 
dimmer when viewing the layer obliquely than when viewing it face-on. This is a well 
known feature of the Eddington approximation, which many equate with the statement 

2cos 1 3θ = ; it is the explanation for the Sun’s limb darkening, for example. 

The escape probability can be applied to any photon emitted in the prescribed medium, 
and to any photon incident from elsewhere, as in equation (14): all the uA



 factors in 
equation (10) can simply be replaced by u uA

 

β . Neglect, to good approximation, 
background incident light (i.e. take ( )0 0Iν = ), such as starlight and the cosmic 
background; this eliminates the remaining B-coefficient terms. This leaves a familiar-
looking system of equations to solve for the energy-level densities jn  : 

 
< >

+ = +∑ ∑ ∑ ∑0 0 ,j ji j ji ji i ij i ij ij
i i j i i j

n n n A n n n Aγ β γ β  (33) 

where 
31

3

ij

ji
ij

e τ

β
τ

−
−

=  (34) 

and ( )

3
,

3 .
8

ij ji j i
ij j

ji iji

c c A n g f
f

dv dz gdv dz
νκτ

ν πν

 
= = −  

 
 (35) 
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Figure 2: comparison of the two slightly different forms of uβ 

 derived 
in section 3. 
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