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Today in Physics 218: updates for other tools in 
electrodynamics

From last time: 
Symmetry of the 
equations: magnetic 
monopoles?
The Maxwell 
equations in matter
Boundary conditions 
for electrodynamics
Potentials in 
electrodynamics

Note: Monday’s class is cancelled, 
in honor of this gentleman on what 
would have been his 75th birthday.
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The Maxwell equations

Again, here are the Maxwell equations, in vacuum, in final 
form:
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Magnetic monopoles

The only remaining sense in which these equations may still 
be approximate is if magnetic charges (monopoles) exist. We 
will see a powerful argument for searching for magnetic 
monopoles in the first homework set (Griffiths problem 8.12); 
they would also symmetrize the Maxwell equations. Note 
that if there are no electric charges or currents, the Maxwell 
equations are symmetrical:
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Magnetic monopoles (continued)

If, on the other hand, there were magnetic as well as electric 
monopoles, with magnetic charge density η and magnetic 
current density K, then we’d have

where, if both electric and magnetic charge were conserved,
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Update #1: the Maxwell equations in matter

Those who took PHY 217 last semester didn’t discuss polarization
and magnetization of matter, and thus won’t be familiar with the
following. Don’t worry; we will only be using linear media this 
semester, and the general forms are presented here only for 
reference, and for the edification of those who took PHY217 last
year.
Charge density comes in free or bound form, bound charges 
being related to polarization, P:

Current density comes in free and bound form (the latter 
related to the magnetization M), plus one other that arises 
from our new consideration of time-variable charge density. 

f b fρ ρ ρ ρ= + = − ⋅P∇
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Maxwell equations in matter (continued)

A time-varying free charge density leads to a time-varying 
free current density, through the conservation of charge. A 
time-varying bound charge density similarly leads to a current 
density that has nothing to do either with free or bound 
currents:
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Maxwell equations in matter (continued)

In PHY 217 we defined the auxiliary fields D and H as:

So let’s put the expressions for charge and current density 
into the complete Maxwell equations and rearrange using the 
auxiliary fields:
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Maxwell equations in matter (continued)

or

in cgs units; 

in MKS. (Again, don’t worry; we won’t be using D and H to 
do problems this semester.)
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Update #2: boundary conditions

In PHY 217, whenever we learned a new Maxwell equation, 
we used it to determine boundary conditions: that is, the 
influence of charge or current densities on the fields and their
derivatives, for use in boundary-value problems. It’s easier 
for this to work with the integral form of the equations:

Again, do not fear the appearance here of D and H; you may 
translate them for purposes this semester as 
or, if you took the class last year, note that we’re deriving the 
boundary conditions completely generally.
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Boundary conditions

Consider the application of these relations to a boundary 
surface with free charge density       and free surface current 
density      , over a scale small enough that the surface looks 
flat, but large enough that charge quantization is averaged 
out. First, construct a Gaussian surface with flat faces (area a) 
parallel  to the surface, infinitesimally above and below the 
surface:
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Boundary conditions (continued)

Then, since the flux through the sides is negligible,

The charge sheet makes a discontinuity of
Similarly, since there is no such thing (yet) as magnetic 
charge,  

So far this is the same as in quasistatics. 
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Boundary conditions (continued)

Next consider a rectangular Ampèrean loop enclosing some 
of the surface current: (infinitesimal) height 2δ, width
long sides parallel to the surface, and area vector a parallel to 
the surface:
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Define a vector 
equal in length to
the loop width, 
pointing in the
+x direction.
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Boundary conditions (continued)

First apply Ampère’s law. The flux of D through the loop 
approaches zero as 

where      is the unit vector normal to the surface, as before. In 
the line integral we can ignore the sides as
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Boundary conditions (continued)

We can use the same loop and current, and apply Faraday’s 
law, and since the magnetic flux vanishes as δ does,

Summary: when traversing a surface with free charges and 
currents,
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Boundary conditions (continued)

In linear media,                                        and if we insert these 
into the boundary conditions we just obtained, we get a set of 
boundary conditions we can all use:

and we will, in fact, use them in a few weeks, when we 
discuss the reflection and refraction of light by material 
surfaces.
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Update #3: potentials

In electrodynamics the divergence of B is still zero, so 
according to the Helmholtz theorem and its corollaries (#2, in 
this case), we can still define a magnetic vector potential as

However, the curl of E isn’t zero; in fact it hasn’t been since 
we started magnetoquasistatics. What does this imply for the 
electric potential? Note that Faraday’s law can be put in a 
suggestive form:
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Thus Corollary #1 to the Helmholtz theorem allows us to 
define a scalar potential for that last bracketed term:

so we can still use the scalar electric potential in 
electrodynamics, but now both the scalar and the vector 
potential must be used to determine E. 

Potentials (continued)
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“Reference points” for potentials 

Our usual reference point for the scalar potential  in 
electrostatics is              at              For the vector potential in 
magnetostatics we imposed the condition

These reference points arise from exploitation of the built-
in ambiguities in the static potentials: one can add any 
gradient to A and any constant to V, and still get the same 
fields.
So we decided to add whatever was necessary to make the 
second-order differential equations in A and V look like 
Poisson’s equation (i.e. easy to solve). 

In electrodynamics these choices no longer produce that last 
result:

0V → .r →∞
0.⋅ =A—
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“Reference points” for potentials (continued)

For instance, Gauss’s law gives us

which with                 still leaves us with a Poisson equation, 
but Ampère’s law gives

2

14 4

1 4 ,

V
c t

V
c t

πρ πρ

πρ

∂⎛ ⎞⋅ = ⇒ ⋅ − − =⎜ ⎟∂⎝ ⎠
∂

⇒ ∇ + ⋅ = −
∂

AE

A

— — —

—

0⋅ =A—

( )

( )

2

2 2

2

4 1 1V
c c t c t
π ∂ ∂

× × = − −
∂ ∂

⋅ −∇ =

AA J

A A

— — —

— —
2

2
2 2
1 1 4or       .V

c t cc t
π⎛ ⎞∂ ∂⎛ ⎞∇ − − ⋅ + = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠∂⎝ ⎠

AA A J— —

(P.R. #11)

16 January 2004 Physics 218, Spring 2004 20

“Reference points” for potentials (continued)

This latter equation does not of course reduce to a Poisson 
equation with any of the reference conditions we have 
imposed. Thus we must look harder to use the built-in 
ambiguity of the potentials to make the differential equations 
simpler. The general way to do this, which we will cover next 
time, is called a gauge transformation.


