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Today in Physics 218: gauge transformations

More updates as we move from 
quasistatics to dynamics:

#3: potentials
For better use of potentials: 
gauge transformations
The Coulomb and Lorentz
gauges
#4: force, energy, and 
momentum in 
electrodynamics

The spectre of the Brocken. Photo by 
Galen Rowell.
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Update #3: potentials

In electrodynamics the divergence of B is still zero, so 
according to the Helmholtz theorem and its corollaries (#2, in 
this case), we can still define a magnetic vector potential as

However, the curl of E isn’t zero; in fact it hasn’t been since 
we started magnetoquasistatics. What does this imply for the 
electric potential? Note that Faraday’s law can be put in a 
suggestive form:

.= ×B A—

( )1 ,  or

1 0 .

c t

c t

∂
× = − ×

∂
∂⎛ ⎞× + =⎜ ⎟∂⎝ ⎠

E A

AE

— —

—

21 January 2004 Physics 218, Spring 2004 3

Thus Corollary #1 to the Helmholtz theorem allows us to 
define a scalar potential for that last bracketed term:

so we can still use the scalar electric potential in 
electrodynamics, but now both the scalar and the vector 
potential must be used to determine E. 

Potentials (continued)
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“Reference points” for potentials 

Our usual reference point for the scalar potential  in 
electrostatics is              at              For the vector potential in 
magnetostatics we imposed the condition

These reference points arise from exploitation of the built-
in ambiguities in the static potentials: one can add any 
gradient to A and any constant to V, and still get the same 
fields.
So we decided to add whatever was necessary to make the 
second-order differential equations in A and V look like 
Poisson’s equation (i.e. easy to solve). 

In electrodynamics these choices no longer produce that last 
result:

0V → .r →∞
0.⋅ =A—
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“Reference points” for potentials (continued)

For instance, Gauss’s law gives us

which with                 still leaves us with a Poisson equation, 
but Ampère’s law gives
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“Reference points” for potentials (continued)

This latter equation does not of course reduce to a Poisson 
equation with any of the reference conditions we have 
imposed. Thus we must look harder to use the built-in 
ambiguity of the potentials to make the differential equations 
simpler. The general way to do this, which we will cover next 
time, is called a gauge transformation.
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Gauge transformations

In electro- and magentostatics, we showed that we could 
always choose our conventional reference points,

without placing any peculiar constraints on E or B. Now we 
have two, more complicated equations to simplify, and a 
more general approach is more fruitful. 

Consider performing a transformation on A and V: add a 
vector to A and a scalar to V, giving new potential functions:

0 as V r→ →∞ 0⋅ =A—

V V β′ ′= + = +A A α
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Gauge transformations (continued)

Now, we can’t add just any old thing to the potentials; we 
need for the fields arising from the new potentials to be the 
same as those from the old:

where       is a scalar function of r and t.
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Gauge transformations (continued)

Combine those last two results:

and integrate the second one over volume, applying the 
fundamental theorem of calculus:
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Gauge transformations (continued)

We can combine the integration “constant” f with
by defining  

Then,

Thus for any scalar function                      the transformation 

makes new potentials but leaves the fields E and B
unchanged.
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Gauge transformations (continued)

This sort of operation on potentials is called a gauge 
transformation, and a particular choice of λ is called a gauge 
condition. 

Clever choices of λ can simplify one or the other of the 
second-order differential equations for the potentials. 
The solution of these simpler equations for the 
transformed potentials gives the same fields as the 
solutions to the untransformed, complicated equations

For instance, to simplify
we could pick λ such that 

2 1 4 ,V
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Gauge transformations (continued)

which, as we showed in PHY 217 (see
http://www.pas.rochester.edu/~dmw/phy217/Lectures/Lect_28b.pdf )
we can always do; that is, there always exists a function λ that 
we can add to A to give an A’with zero divergence. With this 
gauge condition, 

just like in electrostatics (hence the name).
Coulomb gauge only does a lot of good in 
magnetoquasistatics, because otherwise the time 
derivative of A gets big enough that you have to 
remember that 
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Lorentz gauge

It’s hard to compute A in Coulomb gauge. On the other hand, 
we could choose λ such that

for which the second-order PDEs we saw several pages back 
become
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Lorentz gauge (continued)

and

Not utterly simple, but at least V and A are separately 
determined, and the four equations are very similar to one 
another. 
In fact, the four second-order PDEs here are 
(inhomogeneous) wave equations, the solution of which 
will concern us for the bulk of this semester. 
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Lorentz gauge (continued)

Can one always use the Lorentz gauge? I think so, because:

That is, the Lorentz gauge condition λ always obeys an 
inhomogenous wave equation, just as do the potentials in
Lorentz gauge. In MTH 281 you proved the existence of 
solutions to such equations; we’ll demonstrate such solutions 
this semester.
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Update #4: force, energy, and momentum in 
electrodynamics

The Lorentz force law, 

hasn’t changed since we first learned it, but can be used to 
illuminate the relation of the potentials to mechanics. To wit:

According to product rule #4, written for v and A,
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explicitly on r
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Force, energy, and momentum in electrodynamics 
(continued)

so

It will be useful to introduce total time derivatives:

so
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Remember 
Lagrangian and 
Hamiltonian 
dynamics?

Force, energy, and momentum in electrodynamics 
(continued)

But                     where p is the momentum of the point charge 
q, so

This has the form
momentum is

and the related potential energy is
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Force, energy, and momentum in electrodynamics 
(continued)

In quantum mechanics one normally uses the Hamiltonian 
formulation of dynamics; this last result represents the easiest
way to incorporate electrodynamics into quantum mechanics. 
From correspondence to classical mechanics, the Hamiltonian

gives rise to the quantum-mechanical equations of motion,

as well as the classical ones,

canonical canonicalH L= ⋅ −x p
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Force, energy, and momentum in electrodynamics 
(continued)

The classical Lagrangian for a charge q in an electromagnetic 
field is therefore

so the classical Hamiltonian is

In quantum mechanics,                                          
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