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Today in Physics 218: the classic conservation laws 
in electrodynamics

Poynting’s theorem
Energy conservation 
in electrodynamics
The Maxwell stress 
tensor (which gets 
rather messy)
Momentum 
conservation in 
electrodynamics

Electromagnetism on the sun, doing work on matter and emitting 
radiation. (TRACE satellite; Stanford U./Lockheed/NASA.)
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Poynting’s theorem

Suppose a collection of charges and currents lies entirely 
within a volume V. If they are released at some point in time, 
electromagnetic forces will begin to do work on them. 
Consider, for instance, the work done by the forces on charges 
and currents in an infinitesimal volume dτ during a time dt:
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Poynting’s theorem (continued)

We’ve seen this before, of course; it’s just another way to 
write P = VI. But we will learn something by elimination of J
using Ampère’s law:

According to Product Rule #6,
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Poynting’s theorem (continued)

The time-derivative terms in all of these expressions can be 
written as

Using the last three results in the expression for dW/dt gives 
us
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Poynting’s theorem (continued)

V is bounded by surface S. Apply the divergence theorem to 
the first term in the integral, converting it to a surface integral 
over S:

In the last step we have used the fact that time is the only 
variable that survives the integration. 
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Energy conservation in electrodynamics

Poynting’s theorem of course expresses energy conservation. 

We have long known that the energy density stored in 
electric and magnetic fields – that is , the work required to 
assemble the charges and currents in the configuration 
they’re in – is

So the integral of u is evidently the energy within V stored 
in the E and B fields, and the term containing it just gives 
the rate at which the stored energy changes. 
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Energy conservation in electrodynamics 
(continued)

The surface integral term contains a vector field that 
deserves its own name:

Thus,

This means that the rate at which work is done on the 
charges and currents by the fields is balanced not just by 
the rate at which the stored energy decreases, but also by 
a new term – which, since it involves a flux integral over 
the surface bounding V, must be the rate at which the 
fields carry energy out of V.
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Energy conservation in electrodynamics 
(continued)

Put another way: if the stored energy decreases, not all of 
the resulting work goes into kinetic energy of the charges 
– some is radiated away. The Poynting vector tells us the 
energy per unit area and time that is radiated. 

Rewrite the last result as

We may equate the integrands now, and obtain:
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Energy conservation in electrodynamics 
(continued)

an expression that invites comparison with the (charge-
current) continuity equation,

Think of the Poynting vector S therefore as the “current 
density” of energy. 
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The Maxwell stress tensor

We won’t use tensors very much in this class, and you won’t have
to cope with this particular tensor after today. But the path to
expressions for momentum conservation goes straight through the 
Maxwell stress tensor, and this tensor does turn out to be a 
valuable tool in more-advanced courses, so it won’t hurt to 
introduce it here. 
Return to the Lorentz force law, and make a new definition:

is the force per unit volume exerted by E and B. 
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The Maxwell stress tensor (continued)

Using Gauss’s law and Ampère’s law, in the forms

we can eliminate the source terms, in favor of the fields:

The very last term can be put into a more useful form by 
noting that
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The Maxwell stress tensor (continued)

Thus,

Since                  it changes nothing if we add             to the 
second square brackets to make the whole thing look more 
symmetrical:
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The Maxwell stress tensor (continued)

We can “simplify” the terms in square brackets if we 
reintroduce tensor notation. Consider the three Cartesian 
directions to be represented by x, y, z = 1, 2, 3; for example, 
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The Maxwell stress tensor (continued)

It will pay to multiply this out and regroup:
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The Maxwell stress tensor (continued)

where we have reintroduced the Kronecker delta, 

This is for component 1; for component i, we’d get
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The Maxwell stress tensor (continued)

Similarly, 

Let us now define a nine-component object,

with which we can re-write the ith component of both of the 
ugly terms in []:
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The Maxwell stress tensor (continued)

The best way to envision the sum on the right-hand side is as 
matrix multiplication:

The result is represented by a three-component object; that is, 
a vector. We can use a vector-algebra-like symbolism for this 
operation, by using      to denote the second-rank tensor
whose nine components are         The sum is represented thus:

since it now looks so much like a divergence. 
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The Maxwell stress tensor (continued)

Finally, the force per unit volume becomes, in terms of the 
Maxwell stress tensor, 

where 
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Momentum conservation in electrodynamics

The total force on the charges within volume V can be found 
by integrating 

We can now identify                          as the total momentum

stored in the fields E and B, so that                               is the

momentum density in the fields. 
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Momentum conservation in electrodynamics 
(continued)

Rearranging slightly, we have

Interpretation:
Changes in mechanical momentum (mvs for all the 
charges) and momentum stored in fields within V are 
caused by the pressure and shear        distributed over the 
boundary surface S, and vice versa. 
The terms on the diagonal of      

represent pressures in the E and B fields. 
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◊ Momentum conservation 
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Momentum conservation in electrodynamics 
(continued)

The off-diagonal terms, 

represent shear in the fields – the kind of stress that 
causes strain in a direction different than the stress. 

One can also write the momentum-conservation relation in 
differential form:

where            is the mechanical (mv-type) momentum per unit 
volume for the charges within V. 
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Summary

Electric and magnetic fields can store energy and momentum:

or, for that matter, even angular momentum:

and can transport energy (and thus all the other quantities):

Electromagnetic waves are the normal method of transport.
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