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Today in Physics 218: waves
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Electromagnetic waves

We have already seen that the Maxwell equations can be 
combined to yield wave equations for the electric and 
magnetic potentials, if the Lorentz gauge is used. It turns out 
that they yield wave equations for the fields, too. The 
Maxwell equations in vacuum with no sources are

Take the curl of each of the curl equations:
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Electromagnetic waves (continued)

Invoke Faraday’s and Ampère’s law again, and product rule 
#11:

Thus each Cartesian component of each field, in vacuum with 
no sources, obeys the classical wave equation:
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Electromagnetic waves (continued)

In linear media with no sources, for which the Maxwell 
equations are

and where                                      the curl equations become

so the procedure above yields similar wave equations:
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Electromagnetic waves (continued)

The wave equations for linear media have a different wave 
speed than those for vacuum:

where                   is the linear medium’s index of refraction. 
As you probably already know, the speed that appears in 
the wave equation is the phase velocity of wave solutions, 
and c is the phase velocity of light in vacuum. 
Many of the important features of electromagnetic waves 
are displayed graphically by other sorts of waves. In 
particular, it’s worth a close look at waves on a string.
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Transverse waves on a string

Consider a string with mass per 
unit length µ, of very great length, 
held under a tension T. Denote 
position along the string as x and a 
perpendicular displacement of the 
string from its equilibrium position 
by f. Displace a very small section 
δx of the string by a small amount. 
If displacements are continuous (no 
kinks), then the forces are:
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Transverse waves on a string (continued)

If the string indeed does not stretch or shift horizontally, the
angles                 must be small, in the sense that their sines are 
equal to their tangents: 

If the displacement is small, we can expand in a Taylor series,

and ignore terms of higher order than second: 
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The simple solutions to the wave equation

Thus transverse displacements of the string obey the classical 
wave equation, with phase velocity

Now, there are lots of solutions to the classical wave 
equation. In fact, any functional form is a solution, as long as 
the function depends upon x and t only through the 
combination             that is, 

This assertion can be proven using nothing more than the 
chain rule. To wit: 
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The simple solutions to the wave equation 
(continued)

We shall refer to two “simple” solutions, 
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The simple solutions to the wave equation 
(continued)

The wave equation is linear, so if g and h are solutions, so is 
any linear combination of them, such as their sum:

It is useful to note the form this solution takes at some 
specific time, say t = 0:
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The simple solutions to the wave equation 
(continued)

Integration of both sides of this last expression with respect to 
x is the same as integration with respect to z, since t = 0, and 
therefore

Solve this and                                        simultaneously for the 
two functions, and we get 
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The simple solutions to the wave equation 
(continued)

Why is it useful to notice this? Because
change in simple, but opposite, ways as t changes. Consider an 
arbitrary function 

Plotted as a function of x instead of z, at t = 0, it gives the 
same graph…
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The simple solutions to the wave equation 
(continued)

…but at a later time t, the value that g has at every x is the 
same value that the point x – vt had at t = 0. That is, the whole 
pattern has moved to positive x.
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The simple solutions to the wave equation 
(continued)

If you still don’t get it: consider one of the peaks in the graphs 
of g. The peak lies at the same z position       no matter what x
and t are, so at time t, its position along the x axis would be 
given by

So:                 is a wave that travels in the +x-direction as time 
increases. Similarly,                  is a wave that travels in the –x
direction.                 
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Sinusoidal waves

Waves of the form

have special significance, of course, because through Fourier 
analysis, one may resolve any arbitrary wave
into (Fourier) components of this form. 

Special quantities: ω is the angular frequency, ν the 
frequency, and τ the period of oscillation; k the 
wavenumber and λ the wavelength. 
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Sinusoidal waves (continued)

δ is the phase delay. Significance: at t = 0, there is a peak 
of the sinusoidal wave, located at x = -δ/k, and this peak 
will be the next one to reach x = 0. 
The wave                                                   travels toward +x; a 
sinusoidal wave travelling in the opposite direction will 
look like                                                  so that the next peak 
to reach x = 0 lies at x = +δ/k at t = 0 (that is, δ is still a 
phase delay).
But                               so we could just as well write
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wave’s direction.
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Sinusoidal waves (continued)

The wave that propagates toward +x can also be written as

Since manipulation of complex exponentials can be much 
easier than trig functions, we will often work with the 
complex wave

and where A is a real number, with the understanding that 
the real part must be taken in the end, when physical results 
are desired. 
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