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Today in Physics 218: impedance of the vacuum, 
and Snell’s Law

The impedance of 
linear media
Spacecloth
Reflection and 
transmission of 
electromagnetic 
plane waves at 
interfaces: Snell’s 
Law and the first 
Fresnel relation

Lots of small pieces of Eccosorb spacecloth (Emerson & Cuming 
Microwave Products Corp.)
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Electromagnetic impedance of linear media

Enclose a hypothetical source of electromagnetic radiation 
with a surface. The power flowing through the surface will be
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Electromagnetic impedance of linear media 
(continued)

In vacuum,

(Officially, ohms per square, as we’ll see shortly.)
As in the case of the string, the amplitude ratios for light 
reflected and transmitted by the interface between two linear 
media can be expressed compactly in terms of impedance, 
because
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Electromagnetic impedance of linear media 
(continued)

Note that the amplitude ratios come out simple in terms 
of impedance, even if
Note also that there’s no reflected light if the impedances 
of the two media are equal (impedances matched). This 
will be true if                         the media can be quite 
different and still have the same impedance. 
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Spacecloth

What does it mean for vacuum to have an impedance of
(Most resistors have terminals!) Well, consider an infinite slab
of material with resistivity ρ and thickness 
d, and consider further a square of side L
within the slab. 
For voltage difference V between two sides 
of the square, a current will encounter a 
resistance

This is true for any square, any size, any
orientation. 
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Spacecloth (continued)

Space is like this: any square (any size) taken from a slab of 
vacuum exhibits an impedance for electric fields applied 
across the square.

One may think of this impedance as originating in the 
induction of E and B from each other: try to change E, for 
instance, and energy has to be put into B as well.
A medium with resistivity and thickness such that its 
resistance per square is the same as vacuum would absorb 
light without reflection; that is, it would look to incident 
light as if it were an infinite vacuum. 
Such material exists: microwave engineers call it 
spacecloth. 
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Spacecloth (continued)

One prominent example of the use of highly optimized, 
durable spacecloth. (USAF photo.)
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Reflection and transmission for oblique incidence

Now let’s consider plane electromagnetic waves incident 
obliquely on an infinite, planar surface between two different 
linear media, a case which has no counterpart in the realm of 
strings. The geometry is shown on the next page, and the 
fields are

and our problem is to find 
The former two will work out from the boundary

conditions; the latter just from the fact that we are applying 
boundary conditions. 
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Reflection and transmission for oblique incidence 
(continued)

1 1,µ ε 2 2,µ ε
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The ks don’t necessarily lie in a plane: we have to prove this.
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Reflection and transmission for oblique incidence 
(continued)

Solution: At z = 0, write the continuity conditions: all four this 
time: 

or,

All of these are of the form
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Reflection and transmission for oblique incidence 
(continued)

As we’ve seen, this sort of result is not special to 
electromagnetic waves, but appears in boundary 
conditions for any sort of wave. Now, it is an interesting 
fact that, for nonzero constants A, B, C, a, b, and c, if

then  a = b = c and A + B = C,  for all u, as you will show in 
this week’s homework (problem 9.15). 
For our boundary conditions, this means

at z = 0, or

,iau ibu icuAe Be Ce+ =

I R T= =k r k r k r◊ ◊ ◊

.Iy Ry Tyk x k y k x k y k x k y+ = + = +Ix Rx Tx
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Reflection and transmission for oblique incidence 
(continued)

Furthermore, along the x axis,                                   and 
similarly                                 along the y axis. 
If we were to orient the axes such that              then  

as well, and the situation will look exactly 
like the picture a couple of slides ago, with all the ks lying 
in a plane.
Thus there is always such a plane:

This plane is called the plane of incidence.

,k x k x k x= =Ix Rx Tx
Iy Ry Tyk y k y k y= =

0,Iyk =
0Ry Tyk k= =

, ,  and  lie in a plane.I R Tk k k
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Reflection and transmission for oblique incidence 
(continued)

Now back to the figure. From                                   at z = 0 we 
also get

But                                             so the first equation gives us the 
familiar mirror reflection law:

And                      

Since the conditions arise just from continuity, rather than the
physics that gives rise in this case to continuity, these laws 
will apply to waves quite generally. 
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Reflection and transmission for oblique incidence 
(continued)

Since the wave vectors all lie in the incidence plane and the 
fields are transverse, we can treat separately the cases of light 
with E polarized perpendicular to, or parallel to, the plane of 
incidence. 

First we’ll treat the perpendicular case, also known as 
problem !9.16. 
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E perpendicular to incidence plane
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All Es point up, out 
of the page.
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E perpendicular to incidence plane (continued)

Let’s use the same two boun-
dary conditions that we used
for normal incidence, continuity
of the parallel components. 
(We only need two, because

are the only
unknowns left.) At z = 0, 
these are

The        condition tells us nothing this time; the       one tells 
us nothing new:
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E perpendicular to incidence plane (continued)

Using Snell’s Law on this,

we get

which we already knew. 
We will generally find this to be true in our upcoming 
work: one boundary condition will tell us nothing, and 
two of the remaining ones will be equivalent. 
Also generally, though, the parallel-component BCs tell us 
different things, so well use them a lot. 

1 1 0 1 1 0 2 2 0sin sin sin .I I R I T TE E Eµ ε θ µ ε θ µ ε θ+ =

1 2 1 1 2 2sin sin sin sin ,I T I Tn nθ θ µ ε θ µ ε θ= ⇒ =

0 0 0 ,I R TE E E+ =

4 February 2004 Physics 218, Spring 2004 18

E perpendicular to incidence plane (continued)

Now define

and divide the        equation by 

almost like the string again. Add them to get

Multiply the first one by αβ and subtract to get
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Same as 
before, if 
α = 1.


