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Today in Physics 218: dispersion

Motion of bound electrons 
in matter, and the 
frequency dependence of 
the dielectric constant
Dispersion relations
Ordinary and anomalous 
dispersion

The world’s largest-selling 
(nearly 30 million copies!) 
illustration of dispersion. A 
relatively accurate depiction, at 
that.
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Motion of bound electrons in matter: a simple 
model

So far we have treating the propagation of light in matter as if
the permittivity, permeability and conductivity do not 
depend upon the frequency of light. This is not generally 
true. 

Most materials that transmit light exhibit a noticeable 
variation of refractive index with wavelength. This is 
called dispersion, after the action of the best example of 
the phenomenon, the glass prism.
To find out how, consider the effect of a plane wave of 
light on a simple model of a bound electron in an atom or 
molecule... 
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Motion of bound electrons in matter: a simple 
model (continued)

Its bond holds the electron in 
some equilibrium position; 
we can represent the bond 
with a restoring force (like a 
spring), and a “resistance” 
mechanism for losing energy 
and momentum to its 
surroundings (like a shock 
absorber). The nucleus can be 
considered stationary to good 
approximation.
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Motion of bound electrons in matter: a simple 
model (continued)

The net force in the x direction is

so the electron’s equation of motion is

where                     This is the equation of motion of a 
damped, driven harmonic oscillator, which you have 
solved in PHY 235 and (maybe) in PHY 217.  
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Motion of bound electrons in matter: a simple 
model (continued)

With a trial solution                       we have 

If the total dipole moment of the medium containing this 
atom is zero before the field displaces the electron, the 
dipole moment afterward is:
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Motion of bound electrons in matter: a simple 
model (continued)

Because of the complex denominator, p and x are out of 
phase with the electric field. 
Now, this is not the only electron in the medium, nor is 
this the only kind of bond around. Suppose there are N
molecules per unit volume, and M different kinds of 
bonds, in all different directions, and consider for the 
moment just the jth kind. 
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Dispersion relations

If there are       electrons per molecule that are in this 
situation, with damping constant       and natural 
frequency       then the contribution of the jth kind of bond 
to the dipole moment per unit volume,        is

where         is the component of E in the bond direction. 
The net dipole moment per unit volume from all of the 
bonds is the vector sum
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Dispersion relations (continued)

The       are commonly known as oscillator strengths, 
because they indicate the response of a each kind of bond 
(damped oscillator, in this simple model) to the applied 
electric field. To calculate them is generally a job for 
quantum mechanics. 
Nevertheless, we have one constraint on the quantum 
result. Since atoms with Z protons only come with Z
electrons, that’s what the      have to add up to: 

This is the simplest of a family of equations relating the
that are known as sum rules. 
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Dispersion relations (continued)

The vector P, the total dipole moment per unit volume 
induced by the applied electric field, is not new to all of 
us. In PHY 217 we called it the polarization, and noted 
that it was related to the applied electric field by

In linear media, the electric susceptibility      is a scalar (by 
definition), and is related to the dielectric constant ε by

This gives us an expression for ε in terms of the oscillator 
strengths, natural frequencies and damping constants:
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Dispersion relations (continued)

The damping term – which represents the mechanisms by 
which electrons can rid themselves of energy and 
momentum picked up from the applied field – makes the 
dielectric constant complex.
The imaginary part of the dielectric constant leads to 
exponential attenuation of electromagnetic waves 
propagating in the medium: since

it endows an imaginary part to k. 
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Dispersion in a dilute gas

Example: dielectric constant of an ideal monatomic gas. 
For standard temperature and pressure (300 K, 1 atm

so that

For visible light, 
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Dispersion in a dilute gas (continued)

Thus, taking µ = 1,

If ω is far from any of the natural frequencies (resonances)
then the second term under the square root is of order 
1/200, as we have just seen, and we can use the binomial 
theorem again to approximate
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Dispersion in a dilute gas (continued)
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Dispersion in a dilute gas (continued)

It is customary to define from this a complex refractive 
index for gases:

( )
2

22 2 2 21

2
.

M j j

e j j j

fNq
m c

γ ωπ ω
κ

ω ω γ ω=
=

− +
∑

( )
( )

( )

2 22

22 2 2 21

2

22 2 2 21

2
1 ,

4
2 ,

.
2

M j j

e j j j

M j j

e j j j

fNqcn k
m

fNq
m c

cn n

ω ωπ
ω ω ω γ ω

γ ωπ ω
α κ

ω ω γ ω

α
ω

=

=

−
≡ ≅ +

− +

≡ =
− +

= +

∑

∑ Absorption
coefficient

18 February 2004 Physics 218, Spring 2004 15

Dispersion in a dilute gas (continued)

As light propagates through the gas, the electric field 
amplitude is exponentially attenuated, as           so the 
intensity of light will decrease exponentially as it 
propagates, according to 

Caveat: all the formulas in this example pertain to the 
propagation of light through gases. 
• Solids and liquids are much denser, so we could not 

have used the binomial approximation on them.
• Nor do they apply so well at lower frequencies.
• Nor do they work at all near resonances.
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Ordinary and anomalous dispersion

Far from any resonances, the index of refraction rises gently 
as frequency increases. This is what one might call ordinary 
dispersion. Most common glasses exhibit ordinary dispersion 
at visible wavelengths. 

This increase, however, turns out to be due to those 
distant resonances. 
As frequency passes through a resonance, the index 
decreases sharply, then resumes its gentle increase. The 
sudden decrease is called anomalous dispersion.
The absorption coefficient is small far from resonance, but 
peaks sharply on resonance. (See example on next page.)
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Ordinary and anomalous dispersion (continued)

The resonances are 
frequencies at which the 
electrons can get rid of 
energy and momentum 
efficiently – such as the 
frequencies corresponding 
to transitions between 
atomic energy levels.
Especially near a resonance,
the index and absorption coefficient look like they must 
be related by integration or differentiation. Indeed, they 
turn out to be related by a set of integral transforms 
known as the Kramers-Kronig relations. 
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