Today in Physics 218: charges, currents, and
radiation

d Retarded potentials and 1

retarded time ol

 Retarded potentials and
the Lorentz gauge N @@

J Retarded potentials and
the inhomogeneous ~10{
wave equation

Radiation by two oscillating
charges. Animation by Akira
Hirose, University of
Saskatchewan.
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Retarded potentials

d The electromagnetic waves we’ve been discussing have to
originate somewhere. In the following we’ll see that
electromagnetic radiation can be generated by

* time-variable charge and current distributions, and
* accelerating individual charges.

d As usual when dealing with charges and currents, it is
most convenient to calculate potentials first, and then to
obtain fields from the potentials, rather than to calculate
the fields directly.

1 Also as usual, we will do our calculations mostly by
construction of a solution to the relevant differential
equations, demonstration that it works, and reliance upon
the uniqueness of solutions.
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Retarded potentials (continued)

J What are the relevant differential equations? As we first
saw in lecture on 21 January, we get them from Gauss’s
and Ampere’s laws:

V-E=4mp = V-(—VV—1%j=47zp
c Ot
:>VZV+13V-A=—47zp ,
c Ot
2
VX(VXA):4_7T]_1£VV— 1074
C c Ot 2 o2
V(V-A)-V*A= (P.R. #11)
2
or VA - 1074 —V(V-AJrlﬂj:_él_”]
2 o2 c Ot C
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Retarded potentials (continued)

J With the Lorentz gauge condition, these equations
become

1 0V 1 0°A 4z
c? ot c? ot c

that is, inhomogeneous wave equations.

V2V —

=—dzp , V?A-

4

 To construct a solution, first note that we have a lot of
experience with the static case. For 82\// ot? =0 = 82A/ ot%,
the potentials obey Poisson equations:

V2V =-4np VZA:—4—”] ,
C

and in PHY 217 we showed in gory detail that the
solutions to these equations are:
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Retarded potentials (continued)

V(r):jp(r;)dr' ,

(2

g
A(r)=%jl(r)d7 :
1%

where Vis the volume that

contains the charges and
currents.

1 We've also seen this semester that
fields and energy propagate at speed c in vacuum, when
they travel in the form of electromagnetic waves.
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Retarded potentials (continued)

d Here comes the guess:
Every infinitesimal element of charge or current is a
different distance x~away from us (located at r). Thus a
change in the sources at time t'and position r’ doesn’t
lead to a change in the fields at r until the later time
t'+4/c.

d In other words, the fields at r depend upon the condition
of the sources at r'at the earlier time t—x/c. So we'll

guess that
” . / I, . d /
V(r,t):jp(r t—n/c)dr ’ A(r,t):lj](r t—n/c)dr
V (2 C v (2

These are called the retarded potentials.
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Retarded potentials (continued)

Qt, =t—x/cis called the retarded time for the positions r
and 7,

d Now we need to show that these potentials satisfy the
Lorentz gauge condition, and are solutions to the
inhomogeneous wave equation.

4 For the former, we will need to fiddle with the divergence
of | for a bit before we're ready to move on to the
divergence of A. Bear with me for a few slides...
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Retarded potentials and the Lorentz gauge

4 First, note that the product rule for derivatives means that

V-(l)iv-nrv(lj and

< (2 (2

V'(lj=1V']+]V'(lj ,

where Vz&i+3}i+2£ andV’EyAci+§ 0 +z 0
ox oy Oz ox" “ oy o7

as usual. Recall also that because » =r -1/,

o(J-of2)

as we showed and used frequently in PHY 217.

4
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Retarded potentials and the Lorentz gauge
(continued)

d Th
v (L)-tegope()

2 (2

:1V]_V’(lj+1V’]
< (4 <
J Now, there’s an implicit dependence of J on r through
t, =t—=/c just because «=r—r" So, using the chain
rule,
vy-de, Ay o, ot 9yot, 0, ot

ox oy oz ot ox Ot dy ot Oz

:_1[% o Oy o 7, aﬂ 19

ot, ox ot oy ot Oz _25
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Retarded potentials and the Lorentz gauge
(continued)

J Without this implicit dependence uponr, V-] would be
zero, as it was in the static case. Recall that we used to use
V-] =0 in magnetostatic calculations (viz. the Flashback
in the lecture notes for 14 January).

 But J depends explicitly on r/,as well as implicitly through
the retarded time ¢, so by the chain rule again,

V"]: a]x' +8]xr atr N a]]/’ +aly' 8tr N a]Z' _'_a]Z’ 6ti’
ox' ot ox') oy ot oy ) \ o2 ot o7

o] Oy e }_ 1 {a]x' o Oy o 9y aﬂ

= +
ox' oy’ 0z | c| ot ox' ot oy Ot 07
:_8p(r',t,,)_la_]ov,’t
ot c Ot,
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Retarded potentials and the Lorentz gauge
(continued)
Note that the continuity equation, V-] +dp/ot = 0,was
used in the last step.
J Combine these last three results:

V(l):1V]_V'(lj+1V']

% % ) 4 because Vi =-V's
_ 1&%@4«(1}1(_@%
1 t, 1) w\ Ot -
_ _la_f’_vr.(lj
w Of "

d We can use this in the form of A we’ve guessed, and
verify obedience to the Lorentz gauge condition:
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Retarded potentials and the Lorentz gauge

(continued)
',t d '
V-AZV'1 ](r r) d zljv.(ljdz"
cy, ot SN
1¢f 10p o (] : Use the divergence
=—||-———-V'-| = ||dr
eI\« ot " theorem:

"’ c Ot CS

1 The last term vanishes if we choose the surface S to

enclose all of the charges and currents, because no current

flows through that surface, by definition (so J = 0 there):
V-A= _1oV . Lorentz gauge
c ot

(2

106 jp(r’,tr)df,_%i]-da': 10V 1<ﬁ]-da'
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The solutions to the inhomogeneous wave
equations are retarded potentials

J Now we are in a position to see whether the retarded

potentials are solutions to the wave equations we derived

from the Maxwell equations.
[ Start by computing the Laplacian cz)f V, and aim at
showing that this is equal to 12 0 ;/ +47p. First,
ot

we’ll need to fiddle with the gradient of V a bit:

- (r',t,)de" N y
Vv(r,t)_v]j}p _j{vf’ pV(%ﬂd

" "
1%

Q p(r',t, )Jdepends implicitly on r, through ¢, =t—+«/c, so
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The solutions to the inhomogeneous wave
equations are retarded potentials (continued)
_ op Ot, Sy op Ot, i+ op Ot, 2:8_,0Vtr

ot, Ox ot, oy ot, 0z ot,

Vp

Ve=x , and V(ljz—% ,

SO VV(r,t):j
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