Physics 218, Spring 2004 19 March 2004

Today in Physics 218: radiation by accelerating
charges

U Fields from moving
charges: conclusion of
derivation from last time.

U The generalized Coulomb

field and the radiation
field. Radiation from a jet of material
0 Example: radiation by ejected from the quasar 3C273,
electric charge at X-ray (left, NASA Chandra
accelerating from rest, a X-ray Observatory), visible
rederivation of the Larmor  (center, NASA Hubble Space
formula. Telescope), and radio (right,
SERC MERLIN) wavelengths.
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Fields from moving charges (continued)
Last time we obtained some useful components of the
calculation of the fields of moving charges from the Liénard-
Wiechert potentials:
Oyt
ot w-u U
where u = cx —v. Now we can proceed:
10A
E= —vafa— , where
c ot
c
Va9 9 and A=ov-1
[ 1. ) U U
w|l-=x-v
c
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From last time: V¢,

U Next, Vt, : 1 1 1 1
Vi == Vel )=V == o=V (en)
1 ' using product
= (Z’LX[VX"]+2[" V]'L) * rule #4

O We'll have to use the chain rule carefully here:

('¢~V)'¢:(1~V)(r—w[tr]):[frx %-th%-%—az%j(r—w[tr])

:,‘_( ot, d ot, d ot d Jw

o d oty d Ot d
“oxdt, Yoyt °ozd

o, o, o, \dw
=n—|n——+n,—L 44— |—=1—(2-Vt,)v
"{""ax Yoy o Ja, V)
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From last time: V¢, (continued)

Vxe=Vxr+Vxw

i bw, owy JAﬁ[awx_awzjw Wy fw, :
oy Oz 0z  Ox ox Oy

:[&wz ot, Ow, 81‘,J2+[6wx ot, ow, at,Jy

ot, 0z ot Ox

X (Vxn)=2x(-oxVt,)=-0v(x-Vt, )+ Vt, (x-0)
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From last time: Vt, (continued)

Combine these last two with the formula at the start:

Vi, Z—é(lX[VX’L]—['L'V]'L)

:—l(wﬁ—vt, ('L"U)—’(—-I—-W)

1

or Vt, :—l(x—Vtr (v-0))

cn
Solving now for Vt,, we get
Vi, (cv—n-v)=-n ;
" "

Vt, = -

CLt—n0 U
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Fields from moving charges (continued)

- £ =— q9° n-U)=-— qc Ct—n-0
VV_V(M]— (M)ZV( ) (M)ZV( )

Now, Vt, = V[t—i] -V = Ve=—vt, ,and
c c

V(x0)=(+-V)o+(v-V)r+ex(Vxv)+vx(Vxs) . PR #4
This will take a while, but we evaluated terms like these last

time: - N
(- V)= x(ierviJr’(zi v
“ox Yoy 0z
ot, d ot, d ot, d
= @(——+’?—7+'&77 0
ox dt, oy dt, oz dt,
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Fields from moving charges (continued)
50 ot ot ot, | dv
Vo= —L+n—"L+4—L|—=(xVt,)a
(9) (“x Yoy * szdt, (vVt)
Similarly,
(v-V)e=(v-V)(r-w[t,])=| o 00, 200, 2 (r-wlt])
v T Ty T ’
ot, d o, d ot d
=v-| vy —L——t0, LtV W
ox dt, oy dt, oz dt,
o,  ot, ot \dw
=v-| v, —+v,—+v,— |—=v-(v-Vt,)v
( Yox Yoy Foz)dt, ( r)
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Fields from moving charges (continued)

We showed last time that

Vxz=-vxVt, , so,similarly,

ov 0 ov
Vxoo| &2 Sy ,}+{6”x _&]w Dy vy |y
oy oz 0z Ox ox oy

2(%&, vy o, ]h[avx ot, oo, at,jg

+[évy ot, oo, at,J2
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Fields from moving charges (continued)

Thus,
V(%v)=(2-V)v+(v-V)r+2x(Vxv)+vx(VX*x)
(e Vt,)a+v—(v-Vt, )o—nx(axVt,)-vx(vxVt,)
(e Vt,)a+v—(v-Vt,)o—a(x-Vt, )+ Vt, (v a)
+v(v-Vt,)=Vt, (v-v)

:v+(r¢-ufvz)Vt, , and

A ge— [—cth, —v—(a-u—vz)Vt,}

()
= ( qc)3 [v(m~u)+(cz +m-a—vz)(u-u)Vt,J
v
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Fields from moving charges (continued)

But we showed last time that V¢, = —L, so
U
yy =1 5 [v(»c-u)f(cz +m<a7212)m:|
(x-u)

Now for the vector-potential part:
10A 1 0

,7:741,1/):1[‘/51“,&):1 yov, ,oviot
cot 2ot A\ ot ot 2\ " e, ot ) ot
ﬁt, 1 qco ot,
o _ L u
[ 6t,[mu ot 2[ “,)2 ot, ( )]Bt
oy
ot

(Vaf 10 0 (en- va)}

(- u)z ot,
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Fields from moving charges (continued)
104 i Va- qeo 2 v o
cot 2 (g.u)z ot, at ot

1| qc qev (c 2] “
=—|—a+ | v v+an—v" ||—
clnu (r¢<u) 3 U

=1 {a( )+Cv[i{cu—u»u}+a<u—vzﬂ

mu)

= 1u(a-u)-%—iv 2 Chuvan
3
(m-u) c c (2

Thus - finally - we get:
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Fields from moving charges (continued)

E-vyy 1oA__ 4 S[U(z-u)f(c2+m‘a—v2)z:|
c ot (v-u)
__fe 1u(’uu)+1v[c2—vz—£’¢~u+u~’¢]
(,‘.u)3 c c “
e 2 2( x )
=—L|o(v-u)+(c”+w-a-v" )| —w+-0v
(x-u)?{ () ) c
+%a(¢-u)—%v%u-u]
B qec 5 2( "« ) P }
=- c“+ra-v° || ——u|+—a(vu
(«-u){( ) et
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Fields from moving charges (continued)

i [(cz—vz)u+m><(u><u)J

" (wu)

Similarly, but avoiding the tedium,

B=VxA=«XxE .

There is a special significance to each of the two terms in E.
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The generalized Coulomb field

The first term is

This field is proportional to 1/ #2 ,and its direction is the same
as that of # =c«z—wv. Thus it is similar in some ways to the
field for a static point charge. In fact, if we let v =a = 0, this
term gives us

k2 qr 3

Ecczqi(czfvz)(cifv)—) Si=Ti,
~ 3 3 2
(#+[ci-2)) (n-ct) p
BGC =X EGC =0 ,
just as in statics; hence the name.
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The radiation field

The other term,

Eioq = wx(uxa) ,

qu
(e-n)’
is only proportional to 1/r. Thus, as we’ve seen before, in the
case of dipole radiation in the far field, this term is much
larger than the other one at large .

Q The radiation field also points perpendicular to #,as befits
a transverse spherical wave: «- [1 X (ux a)] =0.

0 Note also the presence of a: again it is shown that an
electric charge needs to accelerate in order to radiate.
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Example: power radiated by accelerating charges

As just noted, the power radiated to large distances is
dominated by the radiation field. Let’s compute the power
radiated by an electric charge g that accelerates, starting from
restatt, =0: R R
u=ci-vcx

(Actually this is a good approximation for all speeds v <<c.)
Then,

Epad (t =0)= ("q;)a xx(cixa):ﬁ[i(ﬁa)fa] ,

19 March 2004

and c c .
S(t, =0) :EEXB :EEmd X(#XEpaq)
2
C [ amd . cErag ~
= E["Erad —Erad (" Erad )] = 4r;
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Power radiated by accelerating charges (continued)

. C Al 2
S=4—E.q Erad—"4ﬂ > 4[1(1 u)—a]
n
2
=»2i"zc4 [u2+(»2~a)2—2a (s a)}
2 2
S| o .1 2
=iy [a —(%-a) J_"E,pzc‘* (1—cos 6?)
| q2u2 sinzﬁ’2
4rc® A2 ’

where #is the angle between the acceleration and the
direction to the observing point, r (that is, the angle of ).
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Power radiated by accelerating charges (continued)

The sin? @ factor indicates that the charge radiates no power
in the forward or backward direction, and radiates most of its
power perpendicular to the direction of its acceleration.
Q This should remind you, again, of electric dipole
radiation.
The power radiated through any sphere centered on the
charge is familiar:

q2a2 sin@ , . 2

P=<j'>s.da= i-#d® sin 0d0dg
4xc® 2
29071 2 22 22 Larmor
q°a .3 qa” 4 2q°a
:4 3ISIH 9_[@’14 352”25 3| - formula
70 0 e c again
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