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Today in Physics 218: relativistic accelerating 
charges

Relativistic charges and 
the generalized Larmor
formula
Bremsstrahlung
Synchrotron radiation 

The radio arcs in the Milky 
Way’s center, observed with the 
VLA by Farhad Yusef-Zadeh
(Northwestern U.). 
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Relativistic charges and the generalized Larmor
formula

We derived the Larmor formula,

under the assumption that            This is not always a useful
or interesting approximation. 

However, the derivation of the power is more 
complicated if we relax the condition             so we will 
only sketch the derivation here.
The extra complication arises because we, sitting at point 
r, see the charge to be emitting                      while, from the 
charge’s point of view, it’s emitting  
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Relativistic charges and the generalized Larmor
formula (continued)

It’s true that these are simply related:

We also know that

and at this point it will be convenient to define the power 
per unit solid angle,
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Reminder: solid angle

Solid angle is to angle what area is to distance, and, like 
angle, is bounded. The paradigm of solid angle is an infinite 
cone. It has units (steradians) but no dimensions.

A cone with small opening angle     
corresponds to a solid angle
In spherical coordinates, the infinitesimal 
element of solid angle is

The biggest a solid angle can be is that of 
a cone opened so far that its side 
collapses into a line. 
The value of this solid angle is

α
2 .παΩ =

α

sin :d d dθ θ φΩ =

( )( ) 2sin .da rd r d r dθ θ φ= = Ω

0 0

sin 4 .d d
π π

θ θ φ π
2

Ω = =∫ ∫



22 March 2004 Physics 218, Spring 2004 5

Relativistic charges and the generalized Larmor
formula (continued)

For a concrete example, consider the integral we did on 
the way to getting the Larmor formula:

Express the emitted and observed powers in this fashion:
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Relativistic charges and the generalized Larmor
formula (continued)

Last time we found that the field at large distance radiated 
from a moving charge is

so
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Relativistic charges and the generalized Larmor
formula (continued)

To find the total power emitted, we “just” integrate this 
last result over all solid angles:

This is very complicated and not very instructive, so, just 
as Griffiths does in the book, we’ll skip to the answer:
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Relativistic charges and the generalized Larmor
formula (continued)

Note that the original Larmor formula is recovered if we 
let            in this formula.
Note also that the effect of moving at high speeds
is that a charged particle emits much more power that it 
would alt lower speeds, for the same acceleration. 
Time to apply this in some concrete examples. There are 
two simple geometries that will do for illustration: 
velocity and acceleration collinear, or velocity and 
acceleration perpendicular.

v c
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Example: bremsstrahlung (“braking radiation”) 

Example 11$.3: Suppose that v and a are instantaneously 
collinear at time     as, for example, in straight-line motion. 
Find the angular distribution of the radiation (i.e. 

) and the total power emitted.
Solution:
Since either                          would count, we’ll start with 
something that’s true for either: 
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Bremsstrahlung (continued)

But this is just

where as usual θ is the angle between the acceleration and the 
direction from the charge to us        Meanwhile, 

Thus     
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Bremsstrahlung (continued)

This differs from                            at low speeds by the factor  
Thus             is still zero in the forward and 

backward directions, as it is for
However, if              the quantity              gets very close to 
1 at small angles, so 

Thus the charge beams most of its energy along the wall 
of a narrow cone, concentrated in the forward direction 
(i.e. along v) if its speed approaches that of light.   
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Bremsstrahlung (continued)

Angular patterns of radiation for a charge q at speeds
(left) and                (right). Note the change in scale. Here’s 
what’s plotted:  
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Bremsstrahlung (continued)

By differentiating                           with respect to θ and setting 
the result equal to zero, one can find the angle at which the 
power per solid angle is largest, and it turns out to be

At low speeds, the maximum occurs at                  Thus 
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Bremsstrahlung (continued)

The peak value of                           is thus MUCH larger for 
high speeds than for low speeds; consider that 

The total power emitted is
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Bremsstrahlung (continued)

Since both the low-speed (Larmor formula) and high-speed 
versions of the emitted power depend only on the square of a, 
the same  power and              is seen whether the charge is 
accelerating or decelerating. 

It is more common, terrestrially, to observe the power 
from decelerating particles, by first accelerating a beam of 
charges up to high speeds and decelerating them rapidly 
by sending the beam into a (lead) brick wall:

dP dΩ
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a Most of the power 
is beamed in the 
forward direction.
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Synchrotron radiation

If v is perpendicular to a (the other “simple” geometry), as in 
the case of uniform circular motion, P and               can be 
calculated with just a little more effort than the previous 
problem. (This in fact is problem !11.16 in the book, which 
will not be assigned.) The answers are 

The coordinate system is described
at right. 
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Synchrotron radiation (continued)

The most common way to see charges in uniform circular 
motion in nature is of course to put some in motion in a 
uniform magnetic field. 
This result shows that the radiation still tends to be 
beamed in the forward direction. 
Charges used to be accelerated to high energies like this, 
in variable-B machines called synchrotrons, and the 
radiation resulting from the centripetal acceleration, for 
which the total power is given by the expression above, 
has been called synchrotron radiation ever since. 
Most of the radio radiation by normal galaxies is 
produced in this way, by electrons spiraling around in 
interstellar magnetic fields. 
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Fields from moving charges (continued)

Last time we obtained some useful components of the 
calculation of the fields of moving charges from the Liénard-
Wiechert potentials:

where                   Now we can proceed:
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From last time: —tr

Next,

We’ll have to use the chain rule carefully here:  
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From last time: —tr (continued)
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From last time: —tr (continued)

Combine these last two with the formula at the start:
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Solving now for           we get 
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Fields from moving charges (continued)

Now,

This will take a while, but we evaluated terms like these last 
time:
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Fields from moving charges (continued)

so

Similarly,
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Fields from moving charges (continued)

We showed last time that

,  so, similarly,
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Fields from moving charges (continued)

Thus, 
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Fields from moving charges (continued)

But we showed last time that

Now for the vector-potential part:
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Fields from moving charges (continued)

Thus – finally – we get:
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Fields from moving charges (continued)
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Fields from moving charges (continued)

Similarly, but avoiding the tedium,

There is a special significance to each of the two terms in E.
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The generalized Coulomb field

The first term is

This field is proportional to           and its direction is the same 
as that of                     Thus it is similar in some ways to the 
field for a static point charge. In fact, if we let v = a = 0, this 
term gives us

just as in statics; hence the name.
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The radiation field

The other term,

is only proportional to          Thus, as we’ve seen before, in the 
case of dipole radiation in the far field, this term is much 
larger than the other one at large r.

The radiation field also points perpendicular to     as befits 
a transverse spherical wave:
Note also the presence of a: again it is shown that an 
electric charge needs to accelerate in order to radiate.
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Example: power radiated by accelerating charges

As just noted, the power radiated to large distances is 
dominated by the radiation field. Let’s compute the power 
radiated by an electric charge q that accelerates, starting from 
rest at

(Actually this is a good approximation for  all speeds v << c.) 
Then,

and

0 :rt =
ˆ ˆu c c= − ≅vr r .
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Power radiated by accelerating charges (continued)

where θ is the angle between the acceleration and the 
direction to the observing point, r (that is, the angle of    ).
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Power radiated by accelerating charges (continued)

The            factor indicates that the charge radiates no power 
in the forward or backward direction, and radiates most of its 
power perpendicular to the direction of its acceleration. 

This should remind you, again, of electric dipole 
radiation. 

The power radiated through any sphere centered on the 
charge is familiar:
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