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Circular-aperture diffraction and the Airy pattern
Circular obstacles, and Poisson’s spot.

Today in Physics 218: diffraction by a circular 
aperture or obstacle 

V773 Tau: AO off
(and brightness 
turned way up)

V773 Tau: AO on
Neptune orbit diameter,
seen from same distance
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The circular aperture

Most experimental situations in optics (e.g. telescopes) have 
circular apertures, so the application of the Kirchhoff integral 
to diffraction from such apertures is of particular interest. 
We start with a plane wave incident normally on a circular 
hole with radius a in an otherwise opaque screen, and ask: 
what is the distribution of the intensity of light on a screen a
distance             away? The field in the aperture is constant, 
spatially: 

and the geometry is as follows:
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The circular aperture 
(continued)
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The circular aperture (continued)

Thus,
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The circular aperture (continued)

The aperture is symmetrical about the z axis, so we expect 
that the answer will be independent of the “screen” 
azimuthal coordinate Φ; without loss of generality, then, we 
can take Φ = 0. The integral over 

Don’t try to integrate that directly; it’s a Bessel function of the 
first kind, order zero: 
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Flashback: Bessel functions

The Bessel function of the first kind, of order m, can be 
represented by the integral

Bessel functions of different order are related by the 
recurrence relation

Recurrence relations of special functions are very useful 
when one has to integrate those special functions, as you’re 
about to see. 
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Flashback: Bessel functions (continued)

( )0J u

u

( )1J u
( )2J u

J0 J1 J2

2.405 0 0

5.520 3.832 5.136

8.654 7.016 8.417

11.792 10.174 11.620

14.931 13.324 14.796

Zeroes of the 
Bessel functions
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The circular aperture (continued)

So the far field is

Now use the recurrence relation, with m = 1:
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The circular aperture (continued)

Rearrange the field in a somewhat more convenient form:

This leaves a minor problem: the expression is indeterminate 
at                But the recurrence relation can help us again:
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The circular aperture (continued)

Take the recurrence relation at m = 1 and use the chain rule:
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The circular aperture (continued)

This resolves the indeterminacy:

Because     also has zeroes at finite values of        ,  
has a set of concentric rings for which the intensity is zero 
(dark rings) The first of these lies at                        or 
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The Airy pattern
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The Airy pattern (continued)

Linear scale Logarithmic scale
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The Airy pattern (continued)

A young triple-star 
system, T Tau, 
observed at 
with adaptive optics 
on the Palomar 200-
inch telescope. The 
brightest star has 
saturated the detector 
in the Airy disk. Note 
the extensive nest of 
concentric dark rings 
around it. (Linear 
scale.)

2.2 mλ µ=

2 April 2004 Physics 218, Spring 2004 15

The opaque circular obstacle

We can handle the case of diffraction by a circular obstacle
quite easily, using the result just obtained. For the field,
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The opaque circular obstacle (continued)

and for the intensity, 
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The opaque circular obstacle (continued)

This result has the curious property of not being zero inside 
the shadow of the obstacle. In fact, there’s a sharp peak 
exactly in the center, with peak intensity

And there are concentric bright and dark rings that also lie 
within the shadow, though generally it is much darker there 
than it is outside the shadow.
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The opaque circular obstacle (continued)

Diffraction patterns at 
seen 5 m 

away from 0.09375 inch, 
0.15625 inch, and 0.1875 
inch diameter spheres 
(Ioan Feier, Horst 
Friedsam and Merrick 
Penicka, Argonne 
National Laboratory).

0.635 m,λ µ=
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Poisson’s spot

Not all effects named after famous physicists are meant to 
honor their namesakes. 

In 1818, the French Academy, led by neo-Newtonians like 
Laplace, Biot and Poisson, offered a prize for the best 
work on the theme of diffraction, expecting that the result 
would be a definitive refutation of the wave theory of 
light.
Fresnel, supported by Ampère and Arago, offered a paper 
in which he developed the scalar theory of diffraction in 
much the same way we did, based on the wave theory. 
During Fresnel’s talk, Poisson pointed out that one of the 
consequences of Fresnel’s theory was the intensity peak in 
the center of circular shadows that we just found.
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Poisson’s spot (continued)

Poisson did this, of course, because he thought such a 
result was ridiculous; he meant it as a fatal objection to 
Fresnel’s theory. 
But right after the talk, Arago went 
into his lab, observed the intensity 
peak and concentric rings in the 
shadow directly, and proceeded to 
demonstrate it to the judges.
Thus Fresnel was awarded the prize, 
the corpuscular theory of light stood 
refuted (until Einstein and Planck came 
along), and the intensity peak has been 
known ever since as Poisson’s spot. 

Nick Nicola 
(University of 
Melbourne)


