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Supernumerary arcs

Curiously, no detailed description of our Facts 5 and 6 – the 
purity of colors lower in the rainbow, and the presence of 
supernumerary arcs – predates the late eighteenth century. 

Newton, for example, doesn’t mention them, though it’s 
clear that the color of the brightest supernumerary 
influenced his description of the color (violet) of the blue 
edge of the rainbow.
On a good day, one can see 
three or four supernumerary 
arcs near the top of a bow. 
They’re somewhat easier to 
see by eye than they are to 
photograph. Mikolaj and Pawel Sawicki
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Photograph by Mikolaj and Pawel Sawicki .
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Photograph by Mikolaj and Pawel Sawicki (enhanced from the previous one) .
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Photograph by Mikolaj and Pawel Sawicki .
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Caustics and diffraction

Airy was impressed with how beams of light resisted having 
sharp edges imparted to them. 

By his time, the effects of straight edges was well known, 
and he himself described the effects of the edges of 
circular bundles of rays, as we have seen.
He was particularly interested in caustics, in which the 
“edge” wasn’t provided by an opaque screen. He was 
aware of the explanation of rainbows as caustics (by 
Descartes, Spinoza and Newton), and observed that the 
explanation of supernumeraries by Young was inaccurate, 
so he decided to apply the Fresnel theory of (far-field) 
diffraction to raindrops.
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The calculation is made 
difficult by the geometry 
of rainbow production. 
Wavefronts of incident 
light (the surface 
connecting 
corresponding peaks of E
amplitude) are planes, 
but those of the scattered 
light are not, owing to 
the different path lengths 
through the drop taken 
by different waves. 

Caustics and diffraction (continued)

(Rainbow ray 
in red)
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Airy’s theory of the rainbow and the 
supernumerary arcs

To explain the supernumeraries, Airy sought to use the far-
field diffraction integral:

He thus needed to know          in the vicinity of the rainbow 
ray, accounting for the departure of the emergent wavefronts
from planar shape.

To express this, he constructed a coordinate system along 
the rainbow ray: the u axis along the rainbow 
wavenumber, and the v axis perpendicular to the rainbow 
wavenumber, outward from the center or the drop (see 
below).
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)
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Wavefront of
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

Then the field along a plane can be obtained, by getting the 
phase difference between the plane and the curved 
wavefront from the distance between them:

whence, to borrow a result from this week’s team 
homework problem,

It remains “simply” to find u(v). For this we can invoke 
two of the results we obtained last time.
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

or, using 
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

Furthermore,

which, for the rainbow ray, at
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

we get

Airy restricted his attention to the vicinity of the rainbow 
ray, and expanded the scattering angle in a Taylor series 
about the rainbow ray angle:
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

Now, which             corresponds to which v? Note that the 
geometry along v for the emergent light is the same as the 
geometry along y for the incident light:

Let

or 
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

Thus

which can be integrated trivially (noting that u = 0 at v = 0 
by definition):

Finally (or at least semi-finally),
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

So the far field is

and the intensity is
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

Now make a bunch of substitutions:
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

The function

turns out to be expressible as a combination of Bessel 
functions of order 1/3 and -1/3, but it’s easy to evaluate 
numerically as is – the integral converges pretty fast – and 
that’s the way Airy did it. (Without computers!)

He called          the “rainbow integral,” but we call it the 
Airy function nowadays, in his honor.
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Airy’s rainbow integral
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

This result goes a long way toward explaining facts 5 and 6.
For large (millimeter-size) raindrops, such as those close 
to the ground, the primary-rainbow peak for a given 
wavelength is narrow compared to the angle between the 
peaks for blue and red light. 
The supernumeraries are very close together. 
Thus the colors of the rainbow would look very distinct, 
and the supernumeraries of different colors would wash 
each other out.

(see next page for calculation for large raindrops)
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)

For the smaller drops – say, tenths of millimeters in size –
that would be found up closer to the clouds, the angular 
width of the primary-rainbow peak for each wavelength 
is a significant fraction of the total angular width of the 
primary rainbow. 
The supernumeraries are more widely spaced.
Thus the colors of the rainbow are much less distinct, and 
the supernumeraries can show colors, that would 
primarily be blue or blue-green (as near scattering angles 
142° and 145° in the calculation on the next page), and lie 
within a few rainbow widths of the main bow. This is 
close to what is observed (see page 4).
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Airy’s theory of the rainbow and the 
supernumerary arcs (continued)
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