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Today in Physics 218: relativity and 
electrodynamics 

Relativity and the four basic 
areas of physics
Brief review of the basics of 
the special theory of 
relativity
The Lorentz transformation 
and four-vectors
Scalar products of four-
vectors, and Lorentz
invariants

Six VLBA images taken over a month, showing ejection of matter at 0.9c by the low-
mass Galactic black hole GRO J1655-40 (Bob Hjellming and Mike Rupen, NRAO). 
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Relativity and the four basic areas of physics

Why is it that quantities familiar from the special theory of 
relativity, like                                                show up so 
frequently in the equations of electrodynamics?

Because, as it turns out, the special theory of relativity is 
already built into the Maxwell equations.
That makes electricity and magnetism different from the 
other three basic branches of physics – mechanics, 
statistical mechanics, and quantum mechanics – all of 
which have to be modified (some quite drastically) in 
order to make them consistent with the special theory of 
relativity.
We will spend the rest of the semester exploring this 
connection. 

( )2,  ,  and 1/ 1 ,c v c v cβ γ= = −
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Review of the basics of the special theory of 
relativity

As you’ll no doubt recall, the special theory of relativity was 
constructed by Albert Einstein precisely a century ago, in 
response to some striking failures of the prevailing 
understanding of electrodynamics. 

Electromagnetic radiation was considered, in analogy 
with vibrations in continuous media, to represent an 
elastic deformation of an underlying, universally-
pervasive medium called the æther. 
The original form of the Maxwell equations applied only 
for an observer at rest with respect to the æther: if one 
were in motion with respect to the æther, the transformed 
form of the Maxwell equations were quite a bit more 
complicated.  
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Review of the basics of the special theory of 
relativity (continued)

Among the predictions of this version of electrodynamics 
was that an observer could measure his or her own speed 
with respect to the æther, by measuring the apparent 
speed of light (= c only in the æther’s rest frame). 
But Michelson, in a series of famous experiments, showed 
that the speed of light throughout the year (during which 
Earth’s orbital motion modulate the speed by ±30 km/sec) 
exhibited no variation, to high accuracy.
Lorentz and Fitzgerald noted that Michelson’s results 
could result from a force, exerted by the æther on 
anything that moved through it, that compresses any 
measurement apparatus by precisely the right amount to 
mask the observer’s motion through the æther:
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Review of the basics of the special theory of 
relativity (continued)

Lorentz went on to show that measurements of position 
and time of an event under this model of the æther force, 
made in a reference frame moving at velocity               with 
respect to æther, such that the origin of that frame and a 
Rest frame coincided at t = t’ = 0, were in error according 
to 
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Lorentz transformation
Event happens at 
(x,y,z,t), but is observed 
to happen at (x’,y’,z’,t’).

Lorentz-Fitzgerald 
contraction
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Review of the basics of the special theory of 
relativity (continued)

Furthermore, showed Lorentz, under this transformation, 
the Maxwell equations are invariant in form; thus the 
moving observer would not only be fooled by 
measurements of position and time, but also into thinking 
that the Maxwell equations were the same in the moving 
frame as in the æther’s frame.
So far this had the virtue of involving only conventional 
physical concepts, such as forces, a small modification to 
Hooke’s law, waves as displacements in an elastic 
medium, and the Maxwell and Galilean theories. 
It also had the disadvantage of an increasingly “ethereal” 
propagation medium, a force of unknown origin and 
nature, and much else that is ad hoc.
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Review of the basics of the special theory of 
relativity (continued)

This was all too much for Einstein. He was sure that this is 
far too complicated a way for nature to do its business; he 
was especially suspicious of the idea that the Maxwell 
equations, compact and symmetrical in the æther’s frame, 
took such a hideous form in a moving frame.
He also saw a much simpler way to do it: he proposed 
that
• there is no such thing as the æther;
• in fact, there is no such thing as a universal rest frame;
• the rejection of “universal rest” can be accommodated 

by changing the theory’s principles of relativity, rather 
than its physical principles.
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Review of the basics of the special theory of 
relativity (continued)

All of the special theory of relativity can be derived from two 
postulates:

The laws of physics apply, and have the same form, in all 
inertial reference frames.
The speed of light in vacuum is absolute: the same for all 
observers in inertial reference frames, regardless of the 
motion of the source of light.

where an inertial reference frame is one in which an 
observer feels no inertial forces, such as one in uniform 
motion at constant velocity.

Easier to define unambiguously in pairs: two inertial 
reference frames can move with respect to each other only 
at constant velocity.
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Review of the basics of the special theory of 
relativity (continued)

Among the first results Einstein derived from the two 
postulates are these:

Length is relative, not absolute: moving objects appear to 
be shorter along their direction of motion than they are at 
rest, by exactly the amount Lorentz and Fitzgerald 
thought they are shorter.
Time duration is relative, not absolute: moving clocks 
appear to tick more slowly than they do at rest, according 
to 0
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Review of the basics of the special theory of 
relativity (continued)

Simultaneity is relative, not absolute: two events, that 
appear to happen simultaneously at different places in 
one inertial frame, will not in general appear to be 
simultaneous when viewed from other inertial frames. 
Time and position are both relative, in exactly the way 
Lorentz proposed for the extent to which an observer 
would be fooled by æther compression:
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We still call it the 
Lorentz
transformation, 
though.
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Review of the basics of the special theory of 
relativity (continued)

Velocities are still relative (except for that of light), but 
not as they are in Galilean relativity: for one-dimensional 
motion, it goes like this:

(Note that this automatically makes the speed of light c in 
all inertial frames: if u = c, u’ = c.)

We want now to apply these principles to the relativity of 
forces, fields and potentials. To do this, it will be convenient
to introduce the conventional language of relativity: 
spacetime, four-vectors, and invariant intervals.
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The Lorentz transformation and four-vectors

Remember rotation, a simple coordinate transformation 
covered (for instance) early in PHY 217?

where                                        As a concrete example, consider 
a counterclockwise rotation by an angle φ about the z axis, for 
which
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The Lorentz transformation and four-vectors 
(continued)

Vectors are defined as objects that transform like the 
coordinates x, y, and z do under rotations:
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The Lorentz transformation and four-vectors 
(continued)

Similarly, second-rank tensors are defined as those objects 
which transform with two applications of the rotation matrix:

where                is the transpose of the rotation matrix.

Can we make the Lorentz transformations look like a matrix 
operation? Sure. Consider two inertial frames moving relative 
to one another at velocity v along their x axes:
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The Lorentz transformation and four-vectors 
(continued)

Define

y

,x x

vy

zz

( )

2 ,

,
,
.

vxt t
c

x x vt
y y
z z

γ

γ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
= −

=
=

0 1 2 3, , ,  and ,  so thatx ct x x x y x z= = = =

( )
( )

0 0 1

1 1 0

2 2

3 3

,

,

,

,

x x x

x x x

x x

x x

γ β

γ β

= −

= −

=

=



12  April 2004 Physics 218, Spring 2004 16

The Lorentz transformation and four-vectors 
(continued)

and we can write it as a matrix operation:

where Λ is the matrix above, for which the row and column 
indices are µ and ν, respectively. (For motion in other 
directions, some of the zeroes change to finite values.)
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The Lorentz transformation and four-vectors 
(continued)

In analogy with rotations in 3-D, then, we can define a four-
vector to be a four-component object that behaves the same as 
the coordinates under Lorentz transformation:

Similarly, there are higher-rank four-objects, like second-rank 
four-tensors:

(Convention: Greek indices run 0-3, Latin ones 1-3.)
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Scalar products of four-vectors, and Lorentz
invariants

The scalar product of two vectors is of course rotationally 
invariant: it has the same value in any rotated coordinate 
system. This is because the magnitude of a vector mustn’t 
change under rotations:
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Scalar products of four-vectors, and Lorentz
invariants (continued)

that is, rotation is a unitary transformation, among the 
implications of which is

as you might have demonstrated once upon a time in PHY 
217 (e.g. Griff$iths pro$blem 1.$8). Thus,
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Scalar products of four-vectors, and Lorentz
invariants (continued)

What about inner products of two four vectors? As you might 
expect, this operation generates an object that is invariant 
under Lorentz transformations. However, it turns out that the 
invariant has the form

To book-keep the minus sign, we introduce the covariant
four-vector:

0 0 1 1 2 2 3 3 .a b a b a b a b− + + +

0
0

1
1

22

33

,

aa
a a
a a
a a

⎛ ⎞−⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠

⎝ ⎠



12  April 2004 Physics 218, Spring 2004 21

Scalar products of four-vectors, and Lorentz
invariants (continued)

so that

That this is Lorentz-invariant can be demonstrated, for 
reference frames in relative motion along x, as follows 
(Griff$iths pr$oblem 12.1$7):
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Scalar products of four-vectors, and Lorentz
invariants (continued)

And we can always rotate the coordinates to line the x axis up 
with the relative motion, so this serves as proof of invariance.
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