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Today in Physics 218: Lorentz invariants

The Einstein summation 
convention
The Minkowski invariant 
interval
Proper time and four-
velocity
Four-momentum and the 
relativistic energy

Movie made from VLBI radio observations of the quasar 3C273, showing the 
ejection of material from the active nucleus at apparent speed 7c (!) transverse to 
the line of sight (Tim Pearson, Caltech). See problem 12.6, on the next homework, 
to understand why the ejecta look like they move faster than light.
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Scalar products of four-vectors, and the summation 
convention

Last time we introduced a bookkeeping device for scalar 
products, the contravariant and covariant forms of four-
vectors:

The scalar product can be obtained either by multiplication of 
the vectors that represent the four-vectors:
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Scalar products of four-vectors, and the summation 
convention (continued)

or more compactly as
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Scalar products of four-vectors, and the summation 
convention (continued)

Or even more compactly. When Einstein started using four-
vectors in relativity, he quickly got tired of writing all the 
sums, and began using the following convention: for an index 
that is repeated, once covariant and once contravariant, one 
assumes that the term in which it appears is to be summed 
over that index from zero to 3:

We will use Einstein’s summation convention henceforth.
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Useful scalar products: the invariant interval

Consider two events A and B, 
that can be seen by observers 
in two different inertial 
reference frames. The 
observers would give 
different coordinates for the 
events,
but the same value of

This is called the invariant 
interval.
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Useful scalar products: the invariant interval 
(continued)

If I < 0, the interval is dominated by the time-difference part, 
and is described as timelike as a result. 

Since I < 0, there are no two frames of reference for which
but one can have             , so that A

and B can appear to one observer to happen at the same 
spatial point.
The I < 0 case describes all pairs of events that are 
connected by cause and effect, since in this case the time 
order is always preserved: if I < 0 and A occurs before B in 
one reference frame, if occurs before B in all inertial 
reference frames. 
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Useful scalar products: the invariant interval 
(continued)

If I > 0, on the other hand, one can always find a frame in 
which A and B are simultaneous                 as well as pairs of 
frames in which the events occur in different order. Such an 
interval is called spacelike.
Example (Griffit$hs prob$lem 12.2$1):
The coordinates of events A and B are
Assuming the interval between them is spacelike, find the 
velocity of the reference frame in which they are 
simultaneous. 
Solution: in the new frame,
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Useful scalar products: the invariant interval 
(continued)

Thus,

Since for spacelike separations one can find pairs of 
frames in which the two events occur in opposite orders, 
these sorts of separation cannot apply to events that are 
related by cause and effect. 
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Useful scalar products: the invariant interval 
(continued)

The case I = 0 is referred to as a lightlike separation, because

in all reference frames. Two events separated by a lightlike
interval can be causally related only if the “cause” travels at 
the speed of light.
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Proper time and four-velocity

The proper time, dτ, is a time interval defined in a clock’s rest 
frame, from the dilated interval observed in another frame:

It’s invariant because there’s 
only one frame at rest with 
respect to your clock. Your
speed, according to me, is
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Proper time and four-velocity (continued)

According to your time, though, your speed is

It is useful to construct a four-vector velocity from this new 
object 
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Proper time and four-velocity (continued)

It’s a four-vector, and thus Lorentz-transforms like one:

because     is a four-vector, and the derivative with respect to 
proper time is as invariant as proper time. 

Contrast this with u: this velocity is not part of a four-
vector, because both              need to be transformed. This 
is why the Einstein velocity addition rule you learned in 
freshman physics is more complicated than the Lorentz
transformation. 
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Flashback: Einstein velocity addition rule
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Four-momentum and relativistic energy

From the four-velocity, one can define the four-momentum,
or “energy-momentum four-vector,” as 

where m is the rest mass of the moving body – also an 
invariant, because nothing has more than one rest frame. 

The invariant that can be constructed from the scalar 
product of the four-momentum with itself expresses 
relativistic energy and momentum conservation (note: the 
following is G$riffiths probl$em 12.2$6, more or less):
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Four-momentum and relativistic energy 
(continued)

Since the right-hand side is constant, or equivalently since 
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Four-momentum and relativistic energy 
(continued)

The energy-momentum invariant, and the Lorentz
transformation of the four-momentum, are very useful in 
solving problems on the kinematics of relativistic particles. 
Example (Griffit$hs probl$em 12.3$0): Suppose you have a 
collection of particles, all moving in the x direction, with 
energies                                                        Find the velocity of 
the center of momentum frame, in which the total 
momentum is zero.
Solution:
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Four-momentum and relativistic energy 
(continued)

Example (Griffit$hs probl$em 12.3$3): A neutral pion, with rest 
mass m and relativistic momentum                     decays into 
two photons. One of the photons is emitted in the same 
direction as the original pion, and the other in the opposite 
direction. Find the energy of each photon.  
Solution: The total energy of the pion is given by

and energy and momentum are conserved, so the energy and 
momentum of the photons (1 and 2) are given by
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Four-momentum and relativistic energy 
(continued)

But photons have zero rest mass                     , so

where we’ve take photon 1 to travel along the pion’s
direction. Add these to get        subtract them to get 
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